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Abstract

The Breeder Genetic Algorithm BGA models artificial selection as performed by
human breeders. The science of breeding is based on advanced statistical methods. In
this paper a connection between genetic algorithm theory and the science of breeding is
made. We show how the response to selection equation and the concept of heritability
can be applied to predict the behavior of the BGA. Selection, recombination and
mutation are analyzed within this framework. It is shown that recombination and
mutation are complementary search operators. The theoretical results are obtained
under the assumption of additive gene effects. For general fitness landscapes regression
techniques for estimating the heritability are used to analyze and control the BGA.
The method of decomposing the genetic variance into an additive and a nonadditive
part connects the case of additive fitness functions with the general case.

1 Introduction

Evolution of natural organisms is based on three major components - reproduction, vari-
ation and selection. Some reproductions of natural organisms occur with “failures” called
mutations. A more systematic variation of the genetic material happens in sexual repro-
duction. Fach parent contributes half of its genetic material to the offspring. This method
of variation is called recombination. The offspring will be identical to the parents if the
parents are genetically equal.

Variation is necessary to allow selection to work. Selection in nature is very difficult
to define precisely. The term was introduced by Darwin (1859) very informally. *The
preservation of favourable variations and the rejection of injurious variations, I call Nat-
ural Selection.” But how can an observer predict which are the favorable variations? The
favorable variations are the variations which are preserved! The variations can only be
judged after they have competed in the “struggle for life.” Natural selection is no in-
dependent force of nature, it is the result of the competition of natural organisms for
resources.

In contrast, in the science of breeding the above problem does not exist. The selection
is done by human breeders. Their strategies are based on the assumption that mating
two individuals with high fitness more likely produces an offspring of high fitness than
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two randomly mating individuals. The Breeder Genetic Algorithm BGA introduced in
(Miihlenbein & Schlierkamp-Voosen, 1993) is based on the science of breeding. The science
is part of applied statistics. A major component is the parent-offspring correlation and
the heritability coefficient.

There is one major difference between breeding of natural organisms and the breeder
genetic algorithm. The human breeder has no influence on the genetic operators mutation
and recombination. This is done by nature. But evolutionary algorithms have to simulate
the genetic operators. Therefore the genetic operators as well as their frequency of occur-
rence can be implemented to optimize the breeding process. For instance, the mutation
rate used by the breeder genetic algorithm is larger than the one found in nature. With
biotechnology breeders could also potentially begin to control mutation and recombina-
tion. It is interesting to note that as early as 1930 breeders had been very enthusiastic
about the possibility of increasing the mutation rate by radiation. But experiments later
showed that this brute force method is not effective for breeding animals. The percentage
of lethal mutation was too high.

In this paper we deal initially with a rather simplified model. We assume additive gene
contributions and uniform crossover. Nevertheless five parameters are needed to describe
the initial state of the population and the selection process. The necessary parameters are

e the population size NV

the initial frequency of the desirable allele pqg

the number of loci n

e the mutation rate m
e the intensity of selection [

For this model we will compute the expected number of generations until convergence. It
would be futile to investigate the model with all five parameters variable. Therefore we
will investigate the model with one or more parameters fixed. The outline of the paper is
as follows.

First we will investigate evolution without selection, also called genetic drift (I = 0).
If there is no mutation the population will converge to a unique genotype. In section three
we will analyze selection and recombination in large populations. The analysis is based
on the response to selection equation and on the concept of heritability. Then selection
and recombination are analyzed in small populations by simulations. In sections five and
six mutation in small and large populations is investigated. In section seven the major
results are summarized and discussed.

The above theory gives a clear picture about the behavior of the major evolutionary
components. For the breeder genetic algorithm this theory plays the same role as the ideal
gas theory for classical thermodynamics. The “ideal gas” in evolutionary algorithms are
simple additive fitness functions.

The theory will be extended in section eight to more general fitness functions. The key
concept is estimating the heritability by a regression of offspring to parent. This result
will be used to estimate the heritability by taking a genetic chance model into account.
This method allows the variance of the fitness of the population to be decomposed into an
additive genetic component and epistatic interaction components. An important result of



this approach is the proof that only additive fitness functions have a heritability of one.
All other functions have a heritability less than one.

In the last section we will apply the theory to understand and control the BGA. In a full
BGA all evolutionary components are used. In addition very complex fitness landscapes
have to be searched. We will show that the regression estimates can be used to predict
the heritability and to effectively control the BGA.

Some of the results presented in this paper are also of interest for population genetics.
Our models are restricted to haploid organisms. But in this area our models and equations
are sometimes more precise than the ones used in population genetics. Examples are the
analysis of genetic drift and the analysis of the genetic variance. For a recent survey

about predicting the response to selection in livestock productions see (Verrier, Colleau &
Foulley, 1991).

2 Evolution without selection - genetic drift

It has been known in population genetics for quite some time that a finite population
converges to a single genotype, even if selection is not applied. The mutation rate is
assumed to be negligible. The fixation of the population is a result of its finite size. This
effect has been called genetic drift by Wright (1932). The importance of genetic drift for
explaining evolution in nature has been emphasized by Kimura (1983). He developed a
neutral theory of molecular evolution, claiming that natural selection is not as important
for evolution as previously surmized. Kimura used a very complex diffusion equation
approach to quantify genetic drift (Crow & Kimura, 1970). We will generalize his results.
Two chance models will be distinguished

1. no selection, no recombination

2. no selection, but with recombination

The first model is just sampling with replacement. The second model is an adaptation of
Mendel’s genetic chance model to haploid organisms. For the analysis of genetic effects
the following cases will be distinguished if necessary:

¢ one gene with two alleles
e 1 genes each with two alleles
e 1 genes with an infinite number of alleles

The last case roughly models the genetic representation used by the BGA for continuous
functions of n variables. In all cases, recombination is done by randomly choosing an allele
from one of the parents. For binary representations this recombination scheme is called
uniform crossover (Syswerda, 1989).

The next three theorems have been derived in (Asoh & Miihlenbein, 1994b). The
proofs are based on a Markov chain analysis for one gene with two alleles. The formulas
have been obtained by numerically fitting the data.

Theorem 1 Let there be a gene with two alleles. Let half of the initial population have
allele 0, the other allele 1. Then in a randomly mating population of size N without



mutation and recombination, the expected number of generations until equilibrium GEN,
s given by

E(GEN.)~14-N (1)

If the number of genes or the number of alleles is very large, GI/ N, is only slightly larger.
This is shown in the next theorem.

Theorem 2 Let the number of genes or alleles be large enough, that the genotypes of the
initial population are all different from each other. Then in a randomly mating population
of size N without mutation and recombination, the expected number of generations until
equilibrium G E N, is approximately

E(GEN)~2-N (2)

In table 1 numerical results from simulations are given. They are averages over 10,000
runs. Note the very large standard deviation SD.

N 8 16 32 64 128 256 512
GEN, | 13.6 | 29.4 | 60.3 | 128.0 | 245.2 | 546.0 | 1131.1
SD 7.8 1167 | 335 | 72.1 | 121.1 | 2949 | 736.5

Table 1: Gen. for a large number of genes

The theorems are in agreement with the results of Crow and Kimura (1970). They
obtained for diploid chromosomes twice as large values, i.e GEN, = 2.8N and GFEN, =
4N.

The next theorem gives the convergence time if recombination is applied. It is restricted
to binary representations. This theorem is new.

Theorem 3 Let each gene have two alleles. Let the size of the chromosome be n, the
size of the population be N. Let the initial population be randomly generated. Then for
a randomly mating population with no selection, but with uniform crossover, the expected
number of generations until equilibrium is approzimately

E(GEN.) ~ 1.4-N -(0.5n(n) + 1) (3)

Table 2 gives some results of BGA simulations. One clearly observes that G EN, increases
linearly with the popsize N and only logarithmically with the size of the problem n. This
result shows that recombination is not able to substantially reduce the influence of genetic
drift. We will later show that genetic drift is indeed an important factor if small selection
intensities are used.

The results for an infinite number of alleles case are qualitatively similar. To summarize
some results obtained by simulations, they show that GFEN, scales as N - In(n), similar
to the binary case. It seems that the value of GFE N, for an infinite number of alleles is
about the value of GE N, for the binary case with twice as many genes. The popsizes are
held equal.

In the next section we will analyze selection and recombination in large populations.



N
n 16 32 64

32 | 67.1 ] 131.0 | 261.9
64 | 77.6 | 160.2 | 334.2
512 | 107.7 | 224.0 | 4754
1024 | 123.6 | 247.6 | 504.3
4096 | 141.6 | 289.0

Table 2: GEN. for different » and N = 16,32, 64 with recombination (two alleles)

3 Response to selection

In this section we summarize the theory presented in (Miihlenbein & Schlierkamp-Voo-
sen(1993b). The change produced by selection that mainly interests the breeder is the
response to selection, which is symbolized by R. R is defined as the difference between
the population mean fitness of generation ¢t + 1 and the population mean of generation t.
R(t) measures the expected progress of the population.

R(t) = M(t+1) - M(t) (4)

where M(t) denotes the average of the population at generation t. Breeders measure the
selection with the selection differential, which is symbolized by 5. It is defined as the
difference between the mean fitness of the selected parents M,(¢) and the mean fitness of
the population.

S(1) = Ms(t) — M(t) (5)

Breeders often use truncation selection or mass selection. In truncation selection with
threshold T', the T' % best individuals will be selected as parents. T is normally chosen in
the range 10% to 50%.

The prediction of the response to selection starts with

R(t) = b, - S(1) (6)

bs is called realized heritability in quantitative genetics. The breeder either measures b; in
previous generations or estimates b; by different methods. Two popular methods based
on the regression of parents to offspring will be explained later. It is normally assumed
that bs is constant for a certain number of generations. This leads to

R(1) = b- 5(1) (7)

There is no genetics involved in this equation. It is simply an extrapolation from direct
observation. The prediction of just one generation is only half the story. The breeder (and
the GA user) would like to predict the cumulative response R, for s generations of his
breeding scheme.

Ro= 3 R()=03 S0 (8)



The response to selection is the product of the heritability and the selection differential.
For predicting the response to selection b and the selection differential have to be estimated.

If the fitness values are normal distributed, the selection differential S(¢) in truncation
selection is approximately given by

S(t) = I-a,(1) (9)

where o, is the phenotypical standard deviation. I is called the selection intensity. The
formula is a feature of the normal distribution. A derivation can be found in (Bulmer,
1980).

The science of artificial selection consists of estimating b and o,(t). We just cite the
following theorem (Miihlenbein & Schlierkamp-Voosen, 1993b). It was proven for the
ONEMAX function under the assumption that o,(¢) has a binomial distribution

oy(1) = \fn-p(t) - (1 = p(t))
p(t) is the probability of the advantageous allele in the population at generation t.

Theorem 4 Let the breeder genetic algorithm be run with uniform crossover. If the pop-
ulation is large enough that it converges to the optimum and if the selection intensity I is
greater than 0, then the probability of the advantageous bit p(t) is given for the ON EM AX
function by

p(t)=0.5- (1 + sin (%t + arcsin(2py — 1))) (10)

The number of generations needed until equilibrium is approximate

GEN, = (g — aresin(2pg — 1)) . @ (11)

po = p(0) denotes the probability of the advantageous bit in the initial population.

We next compare the analytical results with simulations. In figure 1 the mean fitness
versus the number of generations is shown for three popsizes N = 1024, 256, and 64. The
selection intensity is I = 0.8, the size of the problem n = 64. The initial population was
generated with pp = 1/64.

A closer look at the simulation results show that the phenotypic variance is slightly
less than given by the binomial distribution. The empirical data is better fitted if the
following estimate is used

5,(1) = 75y/n - p(D) - (L= p(1) (12)

Using this variance one obtains the equations

R(t) = 15 -1\ Jn-p(0)(1 = p(t) (13)

GEN, = 43 (g — aresin(2py — 1)) . @ (14)
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Figure 1: Mean fitness for various N (7' = 0.5,po = 1/64). N = 64 converges first.

The fit of equation 13 and the simulation run with NV = 1024 is very good. For N = 256
and N = 64 the population does not converge to the optimum. These popsizes are less
than the critical popsize N*(1,n,pg). The critical popsize is defined to be the minimum
popsize that the BGA converges with high probability to the optimum. The problem of
determining the critical popsize will be discussed later.

We have not been able to prove a similar theorem for an infinite number of alleles. The
difficulty lies in estimating the variance of the population. We will give some simulation
results in the next section.

For proportionate selection which is used by the simple genetic algorithm we extend
the theorem already proven in (Miihlenbein & Schlierkamp-Voosen, 1993b).

Theorem 5 For a genetic algorithm using proportionate selection the selection differential
s given by

a;(t)
t)=-L 1
500 = (15)
For the ONEMAX function of size n the response to selection can be computed from
R(t) =1-p(1) (16)

If the population is large enough, the number of generations until p(t) = 1 — € is given for
large n by

1—
GEN_.~n-ln—2° (17)
€

po is the probability of the advantageous allele in the initial population.

Proof We will only prove 17. For ONEMAX (n) we have R(t) = S(t). As before we
approzimate the variance by the variance of the binomial distribution



o, (t) = np(t)(1 - p(t)) (18)
Because M(t) = np(t), equation 16 is obtained. From R(t) = n(p(t+1) — p(t)) we get the
difference equation

1 1
t+1)=—+(1—-—)p(t 1
pE+1) =~ + (L= () (19)
This equation has the solution
1 1 1 1
H==(1+1-=)+--- 1——“) R —
)= (14 Dk (- ) (- )y

This equation can be simplified to

p() =1 (1= (1 - po)

By setting p(GEN1_.) = 1 — € equation 17 is easily obtained.

This theorem shows the problem of proportionate selection. It selects too weak if the
population approaches the optimum.

Both theorems of this section assume large popsizes. In the next section we will analyze
small populations by simulations.

4 Analysis of recombination in small populations

We have not been able to analytically estimate the time to convergence for arbitrary
population size N. Therefore we will use simulations in this section. First we will explain
the behavior of the recombination operator for the binary ON EM AX (n) function. In
figure 2 the number of generations GFE N, until equilibrium and the size of the population
N are displayed. The problem size is 64. The initial population was randomly generated
with probability pg = 0.2 of the advantageous allele. The data are averages over 100 runs.

The figure can be divided into two areas. The first area can be called the saturation
region. The population size is large enough so that the population converges to the opti-
mum value. In this area GFE N, is constant. It can be predicted from equation 14 . For
small popsizes G E N, increases with the size of the population. The popsizes are too small
to reach the optimum. But the quality of the final solution gets better with increasing
popsize. This is the major reason for the increase of GFN..

The two regions are separated by a line which is given by the critical population size
N=*. Tt is the minimal population size so that the population converges to the optimum.
N* depends on the selection intensity I, the size of the problem and the initial population.
The relation between N* and [ is especially difficult. N* increases for small and large
selection intensities I. The increase of N* with decreasing [ for I < 0.6 seems surprising.
The explanation for this behavior is genetic drift. If the popsize is too small, the variation
of the population will be substantially reduced by genetic drift. The population will
not converge to the optimum. The problem of estimating N* is very difficult because
the transition from region 2 to the saturation region is very slow. In (Mihlenbein &
Schlierkamp-Voosen, 1993b) it was conjectured that for pg = 0.5
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Figure 2: GEN. vs population size N for pg = 0.2. The critical popsize N* is indicated by a dashed line.

N~ /i - In(n) - () (20)

We have not yet made enough experiments to confirm the above formula. Very small
selection (I = 0) defines the left boundary. This area is called genetic drift. It has already
been investigated in section two. Here G N, increases at the rate O(N - In(n))

From GEN, the number of function evaluations F'F till convergence can be easily
computed by

FE. =N -GEN,
The minimum number F Y is given by
FE? = mIin{N* -GEN.}

For the ONEMAX function FE? is a flat minimum. The minimum is found at
about I = 1. But FFE; does not differ much in the range 0.8 < I < 1.6. This shows
that the efficiency of the search does not crititically depend on the truncation threshold
(Miihlenbein & Schlierkamp-Voosen, 1993b).

Slightly different results are obtained in the case of an infinite number of alleles. Here
the critical popsize is infinite. Therefore a saturation area does not exist. The number of
generations until convergence increases, but the quality of the final solution also improves.
We take as example the optimization of the negative hypersphere in 32 dimensions.

Fo(z) = — Zn: xf

Simulations show that G'FEN. for truncation thresholds of 7" > 0.5 increases only loga-
rithmic in the size of the population N. This is surprisingly small. The major difference



between binary alleles and an infinite number of alleles is shown in figure 3. For the
simulations we used a BGA with discrete recombination. Five curves are displayed which
show the increase of the average fitness for a single run. The mean fitness is displayed
on a logarithmic scale. In all runs the mean fitness increases linearly till shortly before
equilibrium. Therefore, mathematically, our recombination method has a linear order of
convergence. The increase of the mean fitness is only dependent on the selection thresh-
old. Severe selection leads to a larger slope, but the final fitness achieved with the same
popsize is lower. Better final fitness values can be achieved by increasing the population
size or decreasing the search domain. Note that decreasing the search domain from [—1, 1]
to [—0.1,0.1] gives better results than increasing the population size from 512 to 4000.
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Figure 3: Mean fitness for thresholds 7" = 0.5 and 0.125 and N = 512 and 4000. Note that the
mean fitness is displayed on a logarithmic scale. The increase of the mean fitness mainly depends on the
truncation threshold. Severe selection leads to a larger gradient of the mean fitness, but the best fitness
achieved is lower. Smaller populations converge faster, but also to a smaller fitness value.

For continuous functions more specific recombination methods can be applied which
for instance arithmetically combine the two alleles of the parents. In the BGA we mainly
use line recombination (Miihlenbein & Schlierkamp-Voosen, 1993b). In this method the
offspring is randomly placed on the straight line which connects the two parent points.
Simulations show that the behavior of line recombination is very similar to discrete re-
combination. For a given population size the number of generations until convergence is
larger but the quality of the solution is also better. The total amount of function evalua-
tions to obtain the same quality of solution seems to be the same for both recombination
methods. We will investigate several recombination methods for continuous functions in
a forthcoming paper.

The results of this section can be summarized as follows: Recombination is an effective
search operator in large populations with binary genes. For continuous functions recom-
bination has linear order of convergence. But the optimum s only reached by an infinite
population. Therefore recombination should not be used as the only search operator for
continuous fitness functions.



5 Analysis of strong selection and mutation

The mutation operator with a small number of parents is well understood. In principle
it is just a problem of statistics - doing N trials in parallel instead of in a sequence. But
selection converts the problem to a nonstandard statistical problem.

In this section we will analyse the behavior of mutation if the best individual only is
used as parent of the next generation. This can be done in an elitist or non-elitist way.
Elitist means that the former parent stays alive if all offspring are worse than the parent.
In evolution strategies these two strategies are called the plus strategy ”+7 (elitist) and the
comma strateqy ”,” (Back & Schwefel, 1993). The simplest strategy is the (14 1)—strategy.
It uses one parent and one offspring. The fitter of the two survives.

In (Miihlenbein, 1991; Miihlenbein, 1992), we computed the probability of a successful
mutation for a single individual. From this analysis the optimal mutation rate was ob-
tained. The optimal mutation rate maximizes the probability of a success. We just state
the most important results.

Theorem 6 For the ONFMAX function of size n the optimal mutation rate m is propor-
tional to the size of the problem.

1
m= —
n

This important result has been independently discovered several times. The implica-
tions of this result to biology and to evolutionary algorithms have been first investigated
by (Bremermann, Rogson & Salaff, 1966 ).

The performance of recombination was measured by G F N., the number of generations
until equilibrium. This measure cannot be used for mutation because the population will
never converge to a unique genotype. Therefore we will use GFEN,, as performance
measure for the mutation operator. It is defined as the average number of generations
till the optimum has been found for the first time. For a population with two individuals
(one parent and one offspring) GE N,y has been computed by a Markov chain analysis
(Miihlenbein, 1991; Miihlenbein, 1992). In this case GE N, is equal to F'E,,;, the number
of trials to reach the optimum.

Theorem 7 Let pg be the probability of the advantageous allele in the initial string. Then
the (1 + 1) — strategy needs on the average the following number of trials F'E,,;

1
FEopt =€-n - (21)
J

to reach the optimum of the ONFMAX function of size n. The mutation rate is set to
m=1/n.

Proof We only sketch the proof. Let the given string have one incorrect bit left. Then the
probability of switching this bit is given by

si=m-(1—-m)"t=etl-m (22)

The number of trials to obtain the optimum is given by e - 1/m. Similarly if two bits
are incorrect, then the number of trials needed to get one bit correct is given by ¢/2-1/m.



The total number is obtained by summation.

Equation 21 can be approximated by
FE=e-n-(In((1—po)n)+7) (23)

We have confirmed the formula by intensive simulations (Miihlenbein, 1991). Recently
Béck (1993) has shown that F'F,,; can be only marginally reduced if a theoretically optimal
variable mutation rate is used. This variable rate depends on the number of bits yet to be
corrected. This result has been predicted in (Miihlenbein, 1992). Mutation spends most
of the time in adjusting the very last bits. But in this region the optimal mutation rate is
m=1/n.

Theorem 7 cannot easily be extended to a larger number of offspring. Therefore we
will only qualitatively discuss this problem by simulations. Some results are displayed in
table 3. One clearly observes the law of diminishing returns. Increasing the popsize N
reduces GEN,, less and less. Mutation is most efficient with a small number of offspring.

The non-elitist (1, V) strategy has an interesting behavior. For very small N the
strategy is almost a random walk. It requires a huge number of generations to randomly
hit the optimum. For large N the comma strategy becomes similar to the plus strategy.
There will always be an offspring of higher fitness than the parent. This shows that for
the (1, N)—strategy there exists a unique N > 1 where the population needs the minimum
number of function evaluations until convergence. For the (1 4+ N )—strategy this number
is N =1.

N 21 4] 8| 163264128 256|512 | 1024
(1+N) | 750 | 400 | 200 | 115 | 71 | 48 | 37| 30| 26| 23
(1N) - ~ 241 | 112 |69 |50 | 38| 30| 26| 23
S(I+N) | 2.0 | 3.75 | 7.5 | 134 | 21 | 31| 41| 50| 58| 65

Table 3: GEN.p: and speedup S for mutation from one parent (ONEMAX(128))

The speedup 5 shows how much faster the solution is obtained with a larger number of
offspring. It is defined as GENp(1)/GENpi(N). The speedup is almost linear for small
N and seems to slow down to a logarithmic function. This indicates that mutation is not
an efficient search in a large population. We will show in the next section that smaller
selection intensities give still worse results.

The BGA mutation scheme for continuous functions has been analyzed in (Miihlenbein
& Schlierkamp-Voosen, 1993b). It was shown that the (1 + 1)—strategy with the BGA
mutation scheme has linear order of convergence. The same order of convergence was
proven in the previous sections for discrete recombination.

6 Small truncation selection and mutation

First we will compare the severe selection of the previous section (only one individual is
selected as parent) with constant truncation selection. In figure 4 the relation between



GENgpi, F'Eop, and the popsize NV is displayed for these two selection methods. The selec-
tion thresholds are T" = 0.5 and the smallest one possible, "= 1/N. In large populations
the strong selection outperforms the fixed selection scheme by far. These results can easily
be explained. The mutation operator will change one bit on the average. The probability
of a success becomes less the nearer the population comes to the optimum. Therefore the
best strategy is to take just the best individual as parent of the next generation.
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Figure 4: GENop: and function evaluations (FE) for various N and different T (ONEMAX(64))

From GEN,,; the expected number of trials needed to find the optimum can be computed

FEopt - N N GENOpt

For both selection methods, F'E,,; increases linearly with N for large N. The increase
is much smaller for strong selection. The smallest number of function evaluations are
obtained for N < 4.

We now turn to the theoretical analysis of mutation and truncation selection in a large
population. The analysis depends on an extension of the response to selection equation.

Theorem 8 Let s; be the probability of a mutation success, imp the average improvement
of a successful mutation. Let f; be the probability that the offspring is worse than the
parent, red the average reduction of the fitness. Then the response to selection for small
mutations in large populations is given by

R(t)=S(t)+ st -itmp— fi-red (24)
S(t) is the average fitness of the selected parents.
Proof Let M(t) be the average of the selected parents. Then
M+ 1) = 5o Mo(0) + imp) + fi(My(t) = red) + (1 = s — FIM,(1)

Subtracting M(t) from both sides of the equation we obtain the theorem.

The response to selection equation for mutation contains no heritability. Instead there
is an offset, defined by the difference of the probabilities of getting better or worse. The



importance of s; and f; has been independently discovered by Schaffer & Eshelman, (1991).
They did not use the difference of the probabilities, but the quotient which they called
the safety factor.

St
YT
In order to obtain an empirical law we have to estimate s; and f;. This can be done by
using the results of (Miihlenbein, 1991). The estimation requires the average number ¢ of
wrong bits of the parent strings as input. But ¢ can be easily transformed into a variable
depending on the state of the population at generation t. This variable is the marginal
probability p(¢) that there is the advantageous allele at a locus. p(¢) was already used in
the previous theorems. ¢ and p(t) are connected by

i (1-p(t) =n— M(1) (25)

The following empirical law will be derived by a mixture of statistical analysis and simu-
lation results.

Empirical Law 1 For a truncation threshold of T = 0.5, a mutation rate of m = 1/n,
and n >> 1 the response to selection of a large population changing by mutation is approx-
imately

R(1) = 1+ (1= p(0))e 70 = p(re (=710 (26)

Proof Let each parent have i bits wrong, let s; be the probability of a success by mutation,
fi be the probability of a defect mutation. s; is approximately given by the product of
changing at least one of the wrong bits while not changing an correct bit (Miihlenbein,
1991). Therefore

si=(1=m)""(1 = (1L —m))
Similarly

fi= (@ =m) (1= (1-m)"™)

We now turn to the population at generation t. From equation 25 and 1 — (1 — m)Z ~i-m
we obtain

Because (1 — 1)" ~ e we get

si= (1= p(t)) e

We are left with the problem of estimating imp and red. In a first approximation we
set both to 1 because a mutation rate of m = 1/n changes one bit on the average. We
have not been able to estimate S(t) analytically. Simulations show that for T = 0.5 S(t)



decreases from about 1.15 at the beginning to about 0.9 at GEN,y. Therefore S(t) =1 is
a reasonable approximation. This completes the proof.

Equation 26 defines a difference equation for p(t + 1). We did not succeed in solving it
analytically. We have found that the following linear approximation gives almost the same
results

Empirical Law 2 Under the assumptions of empirical law 1 the response to selection can
be approximated by

R(1) = 2 - 2p(1) (27)
The number of generations until p(t) = 1 — € is reached is given by

1 _
GEN,_. ~ 2. jp=—10
2 €

Proof:The proof is identical to the proof of theorem 5.

In figure 5 the development of the mean fitness is shown. The simulations have been
done with two popsizes (N = 1024 and 64) and two mutation rates (m = 1/n and 4/n).
The agreement between theory and simulation is fairly good. The evolution of the mean
fitness of the large population and the small population is more or less the same, if the
same mutation rate and the same truncation threshold is used. This result demonstrates
that a large population is computationally inefficient for mutation.
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Figure 5: Mean fitness for small and large N and mutation rates of 1/n and 4/n (po = 1/64). The
population size has no influence on the increase of the meanfitness. The mean fitness of the population
with mutation rate 4/n increases faster, but the increase stops at generation 40.

A large mutation rate has an interesting effect. The mean fitness increases faster
at the beginning, but the population never finds the optimum. This observation again
suggests using a variable mutation rate. But we have already mentioned that the increase
in performance by using a variable mutation rate is rather small. Mutation spends most



of its time in getting the last bits correct. But in this region a mutation rate of m = 1/n
is optimal.

The major results of the last two sections can be summarized as follows: Mutation
in large populations is not effective. It is more efficient with very strong selection. The
response to selection becomes very small when the population is approaching the optimum.
The efficiency of the mutation operator critically depends on the mutation rate.

7 Summary of the major results

Let n denote the number of genes, N the size of the population. Any finite population
of size N will converge to a single genotype, even if selection is not applied. This effect
is called genetic drift. The expected number of generations until convergence GEN, is
surprisingly low.

E(GEN.)~ 1.4- N -(0.5n(n) + 1) (29)

The above equation is valid for recombination without selection and mutation. We now
turn to truncation selection. If the size N of the population is larger than the critical
popsize N*, the minimum popsize to converge to the optimum with high probability, then
we have for the expected number of generations until convergence
T n

GEN, ~ (5 — aresin(2pg — 1)) : % (30)
In the above equation the mutation rate is set to 0. Note that GEN, is independent of
N. The estimation of the critical popsize is very difficult. We conjecture

N /- In(n) - fi(po) - folI) (31)

Proportional selection as used by the simple GA (Goldberg, 1989) selects too weakly
when the variance of the population becomes small. The expected number of generations
GEN,_y/, until the favorable allele is distributed in the population with probability of
1 —1/n is given by

GENi_1jn = n-In(n-(1-po)) (32)

This equation is valid for a mutation rate of 0. The number of generations is much larger
than with truncation selection. The analysis of recombination in small populations is
difficult. We have shown some results in phase diagrams relating the posize and GFEN..
The phase diagrams can be divided into two areas. The border is given by the critical
popsize N*.

We now turn to populations using only mutation. Mutation is a random search operator
especially efficient in small populations. The most important result concerns the mutation
rate. The mutation rate is defined as the probability of mutating a gene.

Rule of thumb: The mutation rate m = 1/n where n is the size of the chromosome
is almost optimal .



For the above mutation rate the expected number of generations GGE N,y until the
optimum is found has been computed for the (14 1)—strategy (one parent, one offspring;
the better of the two survives).

GENyy=~e-n-(In(n-(1—po))+7) (33)

Mutation in a large population is inefficient. The asymptotic scaling of GFEN,,; is inde-
pendent of the popsize N. It stays at O(n - In(n)). For very large popsizes GE N,y is
given by

n
GENy_1n = 5 In(n-(1—mpo)) (34)

The above equation is valid for a large population and a truncation selection threshold of
T = 0.5. Note that the above value is about half the value of proportional selection.

The above theorems show that for binary representations populations using either
recombination or mutation are able to locate the optimum. If pg = 0.5 i.e. half of the bits
are correct in the initial population, the asymptotic order of the number of trials needed
(FEyp), seems to be the same, namely O(n - {n(n)). For recombination this number
is obtained by multiplying GEN with the critical popsize N*. Therefore the question
which of the two operators is more efficient is difficult to answer. The comparison needs
an exact expression for N*, which we have not yet obtained. But we can easily make
a qualitative comparison. The major difference between mutation and recombination is
their dependence on pg, the percentage of the desired allele in the initial population.

Let us take py = 1 — 1/n as example. Here one bit is wrong on the average. Mutation
will need about O(n) trials to change the incorrect bit. Uniform crossover of two strings,
each with one bit wrong, will generate the optimum string with probability 1/4, indepen-
dent of the size of the problem. Therefore the critical popsize N* is also independent of n.
Thus recombination is much more efficient than mutation. But the determination of the
exact V*is also difficult in this simple case. It will need on the average 4 trials to generate
the optimum. But the probability that a popsize of 4 will not generate the optimum is
0.75% = 0.31. It needs 16 trials in order to obtain the optimum with 99% probability.

If we take py = 1/n the situation is reversed. Now mutation is much more efficient than
recombination which needs a huge popsize in order to locate the optimum. This behavior
can also be found in individual runs. By comparing figures 1 and 5 one observes that
the increase of the average fitness of a population using mutation is better than that of
a population using recombination when far away from the optimum. Recombination has
too few building blocks to generate better offspring. But recombination is more effective
than mutation nearby the optimum. Here the likelihood of success of mutation is much
lower.

A more detailed comparison between mutation and recombination, also by means of
a competition between populations can be found in (Miihlenbein & Schlierkamp-Voosen,
1993a). The question now arises how to combine mutation and recombination so that the
resulting algorithm is more effective than an algorithm using a single genetic operator.
We see two approaches at least.

In the first approach, an optimal mutation rate is constantly applied. The variance
of the population remains high enough for recombination to be effective. This method is
normally used by the BGA. The second approach is mainly based on recombination. If the
variance is below a certain threshold the population is thoroughly changed by applying



mutation vigorously. This event gives recombination the chance for further improvements.
This approach is used by Eshelman (1991) in the CHC algorithm. The success of this
procedure depends on the right amount of change. If too much is changed then this would
be just a new start of the algorithm. If the changes are too small then the population will
stay in equilibrium.

Most of our analytical results have been derived under the assumption of additive ge-
netic effects. This theory explains the behavior of the most important evolutionary forces.
It plays a similar role for the BGA as the “ideal gas” theory for thermodynamics. There
exists no ideal gas in reality, but the ideal gas theory gives much insight into the overall
behavior of gases. In order to understand evolutionary algorithms in more complex fitness
landscapes, we have to extend the theory by using more advanced statistical methods.
This is the topic of the next section.

8 Statistics and genetics

In this section we will present two methods for estimating the heritability. The first one
will use the concept of regression of offspring to parent and the second one the concept
of genetic variance. Both methods have been of great importance in the development of
statistics and population genetics. Therefore we will first give a short historical survey.

Genetics represents one of the most satisfying applications of statistical methods. Mod-
ern statistics starts with Galton and Pearson who found at the end of the last century
a striking empirical regularity. On the average a son is halfway between his father and
the overall average height for sons. They used data from about 1000 families. In order
to see this regularity Galton and Pearson invented the scatter diagram, regression and
correlation (see Freedman et al., 1991).

Independently Mendel found some other striking empirical regularities like the reap-
pearance of a recessive trait in one-fourth of the second generation hybrids. He made up
a chance model involving what are now called genes to explain his rules. He conjectured
these genes by pure reasoning - he never saw any.

At first sight, the Galton-Pearson results look very different from Mendel’s, and it is
hard to see how they can be explained by the same biological mechanism. Indeed Pearson
wrote an article in 1904 claiming that his results cannot be derived by Mendel’s laws.
About 1920 Fisher, Wright and Haldane more or less simultaneously recognized the need
to recast the Darwinian theory as described by Galton and Pearson in Mendelian terms.
They succeeded in this task, but unfortunately much of the original work is abstruse and
very difficult to follow. The difficulty lies in the exact definition of genetic variance and its
connection to heritability. We will in this section adapt the classical methods to haploid
chromosomes. Furthermore we will precisely define the concepts.

The first theorem connects the realized heritability by = R(t)/5(¢) with the regression
coefficient between midparent and offspring. Let f;, f; be the phenotypic values of parents
v and j, then

f;j _ fz‘|2‘f]

is called the midparent value. Let the stochastic variable F denote the midparent value.



Theorem 9 Let F(t) = (f1,..., fn) be the population at generation t, where f; denotes
the phenotypic value of individual t. Assume that an offspring generation O(t) is created
by random mating, without selection. If the regression equation

0ii(1) = (1) + bpo() I 4 o (35)

with
E(e;;)=0
is valid, where o;; 1s the fitness value of the offspring of i and j, then

Proof From the regression equation we obtain for the expected averages
E(O(1)) = a(t) + bpo (1) M (1)

Because the offspring generation is created by random mating without selection, the ex-
pected average fitness remains constant

Let us now select a subset as parents. The parents will be randomly mated, producing the
offspring generation. If the subset is large enough, we may use the regression equation and
obtain for the averages

M(t+1) = a(t) + bgo(t) - Ms(1)

Here M(t 4 1) is the average fitness of the offspring generation produced by the selected
parents. Subtracting the above equations we obtain

M{(1 4+ 1) = M(1) = bpo(t) - (Ma(t) — M(1))

This proves bpn(t) = by.

The importance of regression for estimating the heritability was discovered by Galton and
Pearson. They computed the regression coefficient rather intuitively by scatter diagrams
of midparent and offspring (see Freedman et al., 1991). The problem of computing a good
regression coeflicient is solved by the theorem of Gauss-Markov. We just cite the theorem.
The proof can be found in any textbook on statistics (Rao, 1973).

Theorem 10 A good estimate for the regression coefficient of midparent and offspring is
given by

(37)



The covariance of O and F is defined by

_ 1 _ _
cov(O(1), F(1)) = + 3 (01 = av(0(0)) - (fij — av(F(1)))
]
av denotes the average and var the variance. Closely related to the regression coefficient
is the correlation coefficient cor(F,0). It is given by

cor(F(1),0(0) = brol1) - (Fam 2

The above theorem enables us to estimate the heritability by a second method. It works
as follows. For a large sample population F' the offspring have to be created by random
mating. Then the regression coefficient bz, can be computed by equation 37. This
procedure is more robust than dividing R(t) by S(t). First, it works also in the case of
small selection intensity. Second, the trustworthiness of the computation can be estimated
by statistical techniques.

By the above method an average value for the heritability is computed. The average
is taken over the whole domain. For the breeder genetic algorithm we decided to proceed
slightly differently. The regression coefficient is only computed for the selected parents
and their offspring. This local approximation makes it possible to compute regression
coeflicients which depend on the given population and the local fitness landscape.

The next theorem shows the connection between midparent and parent regression.

Theorem 11 Midparent and parent regression are connected by

bro(t) =0.5-bpp(t) cor(F(t),0(t)) = @cor(F(t), O(t)) (38)

Proof We have

From (37) the theorem is obtained.

We now describe a method for estimating the covariance. This method connects a
microscopic genetic chance model and the macroscopic phenotypic covariance. It is re-
stricted to discrete genes. In this paper we only give the necessary definitions and the
fundamental theorem. The interested reader is refered to Asoh and Miihlenbein (1994a)
where the proof can be found. A detailed computation is given for a diploid chromosome
with two genes in (Crow & Kimura, 1970).

Let a haploid chromosome with n binary genes x; be given, f(x) its fitness. Let the
genetic chance model be defined by uniform crossover. This model can be considered as
Mendel’s chance model restricted to haploid chromosomes. We will decompose the fitness
value f(x) recursively into an additive part and interaction parts. Let p(x) denote the
probability of x, p(x|z;) the conditional probability of x given z;. First we extract the
average.

f(x) = av(f) + ro(x) (39)



Then we extract the first order (additive) part from the residual ro(x).

n

ro(x) =Y fio(wi) + ri(x) (40)

=1
where f;)(@;) are given by
fiy(@) =Y p(xli)ro(x) = > p(x|zi) f(x) = av(f)
X[z X|@;

Here 3"|,, means that the i-th locus is fixed to the value x;. The fy;)(2;) minimize the

quadratic error Y-, p(x)ri(x)%.

If r1(x) # 0, we can proceed further to extract the second order terms from r(x):

ri(x) =Y fap(@ewg) + ra(x) (41)

(4.9)
1<J

where

> p(x|esag) m(x)

X|z;,z;

> p(xlas ) F(x) = Sy (@) = fij(x)

X|z;,z;

f(i,j)(xiv ;)

If we have n loci, we can iterate this procedure n — 1 times recursively and finally we get
the decomposition of f as

f&) = [+ @)+ fugp(wie)+ -
i (4,)
+ S S ) (@i i) F o1 (X)
(i1, tn—1)

11 <. <tp—1

Let Vi, for £k = 1 to n — 1 be defined as
Vi = Z Z P(Q%v ey xzk)f(luﬂk)(x%, oo xik)27 (42)

'(’i ..... zk) Lig geeesliy,
11 <...<1g

and

V=Y p(x)ra_a(x)? (43)
X
We are now able to formulate the fundamental theorem.

Theorem 12 Let the population be in linkage equilibrium i.e.
p(x) =[] pi(z) (44)
=1

Then the variance of the population is given by

var(F)=Vi+ Vot -+ V1 + 1V, (45)



The covariance of midparent and offspring can be computed from

1 1 1 1
cov(F,0) = §V1 + ZVQ +o Ve = Z Q—ka (46)

From theorems 10 and 12 we obtain
Corollary 1 If the fitness function is additive that is, f(x)=Y_; fi(z;), then

cor(F,0)=/1/2  bpo =1 (47)

The above theorem plays an important role in the science of breeding. Breeders conjecture
that the additive genetic variance Vi is the most important factor of the heritability. The
higher order interactions contribute much less to the heritability. Therefore they can be
neglected. We will test this conjecture in a forthcoming paper.

Numerically, decomposing the variance is computationally far too expensive to be of
use for the breeder genetic algorithm. But the regression technique is very simple to
implement. We will show in the next section that the regression technique can be used to
control and guide the breeder genetic algorithm.

9 Numerical applications of the theory

From statistics and population genetics it is known that the regression coeflicient should
be a reliable estimate for heritability in the case of continuous fitness functions and large
populations. Therefore as a first example we take the minimization of the hypersphere.
The BGA for continuous functions has been described in (Miihlenbein & Schlierkamp-
Voosen, 1993b). It uses a floating point representation. In figure 6 scatter diagrams of
midparent and offspring at generation 1 and 30 are shown. In this example only discrete
recombination is used, no mutation. It is easily seen that the whole population is moving
towards the global minimum, which is 0 in this example. The regression coefficient is
almost exactly one in both diagrams as predicted by the theory.

In figure 7 the numerical values of the two different estimates for the heritability are
shown (R(t)/S(t) and the regression coefficient). Both estimates oscillate around 1 as
predicted. The correlation coeflicient is about 0.5. This is less than the maximum value
possible, which is v/0.5. The reason for this difference is the selection. The selection
reduces the variance of the parents and therefore the correlation coefficient.

We just report the results for a simulation run without selection. In this case the
R(t)/S(t) estimator cannot be used because S(t) is about 0. The regression coefficient
can be computed as usual and remains 1. Furthermore the correlation coefficient is about
V0.5 as predicted by the theory.

The above results are not restricted to simple unimodal functions. As the next example
we take the highly multimodal function which is known as Schwefel’s function F'7 .

F= Z —x; sin <\/|x2|) — 500 < 2; <500 (48)
1

The theory predicts that the multimodality of this function can be considered more or
less as noise for the BGA. It should have no major influence on the regression coefficient.



Fit_off Fit_off

0.05

gen :1 gen : 30

f(x) = 2.336 + 0.964x f(x) = 0.0002384 + 0.9941x
r :0.5532

120] r :0.5066 L 0.04

0.03

0.02

0.01

AvgFit_par 0

AvgFit_par
40 80 120 0.01 0.02 0.03 0.04 0.05

Figure 6: Scatter diagrams for generations 1 and 30 for the hypersphere. Only discrete recombination is
used (N=1024,T=0.5).
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Figure 7: Heritability estimates (regression coefficient solid line, R(t)/S(t) dashed line) and correlation
coefficient r for the hypersphere (N=1024,T=0.5).

Indeed, with random mating, the regression coefficient is 1 and the correlation coeflicient
between midparent and parent is about /0.5, just as for the hypersphere. Figure 8 shows a
real BGA simulation run with selection, recombination and mutation. One clearly observes
that the search is first driven by recombination, then by mutation. From generation 17
on, the regression coefficient substantially differs from the ratio estimator R(¢)/.5(t). Now
the search is mainly driven by the random operator mutation. The BGA mutation scheme
is described in (Miihlenbein & Schlierkamp-Voosen, 1993).

Next we turn to binary functions. We take as examples

e ONEMAX(n)
e PLATEAU(20,3)
e DECEP(10.3)
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Figure 8: Heritability estimates b with mutation and recombination (N = 256). The correlation coeffi-
cient r drops to zero. The regression coefficient (solid line) and the ratio estimator (dashed line) are almost
equal at the beginning. Then the ratio R(¢)/S(¢) goes to zero whereas the regression coefficient remains
high till generation 22.

PLATFEAU(20,3) has a string length n of 60. An increase in fitness is allocated only if
three consecutive bits at loci 1,3,6,.. are 1’s. In each case, the fitness is increased by 3.
DECFEP(10,3)is the deceptive function defined by Goldberg (Miihlenbein, 1991).

In figure 9 the results of a BGA run are shown for ON EM AX (64) with a truncation
threshold of T = 0.5 and uniform crossover, but without mutation. The two heritability
estimates coincide fairly well. They are about 1, as predicted. The correlation coefficient is
about 0.5 till generation 14. This is less than the correlation coefficient without selection,
which is v/0.5. At the end of the run the correlation coefficient increases. This behavior
indicates that the genotypes of the selected parents are becoming very similar. Therefore
the offspring are very similar to both parents.
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Figure 9: Heritability b estimates (regression coefficient solid line, R(¢)/.5(t) dashed line) and correlation
coeflicient r with recombination only for ONEMAX(64) (N = 128,T = 0.5)

Our next example is the PLATEAU function. We will discuss PLATEAU(20,3) and
PLATEAU(20,5). PLATEAU(20,5) has a plateau of size 5, therefore it is more difficult
to optimize. Without selection the regression coefficients for the two functions are about
0.7 and 0.4, the correlation coefficients are about 0.5 and 0.3. In figure 10 we have used
a truncation threshold of T" = 0.5. For both functions the regression coefficients are
substantially higher than without selection. This indicates that selection is very effective
for this fitness function. But note that the realized heritability R(¢)/S5(t) is considerably
smaller than the regression coefficient. For PLATEAU(20,5) it substantially increases



during the run.
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Figure 10: Heritability b estimates (regression coefficient solid line) for PLATEAU(20,3) and (20,5)

The last example is the deceptive function DECEP(10,3). This function is called de-
ceptive, because the search is guided into the local optimum (0,0,0). The global optimum
is at (1,1,1). Without selection, the regression coefficient is about 0.5 and the correlation
coefficient about 0.35. This is shown in figure 11.
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Figure 11: Heritability b and correlation 1 estimate with recombination for DECEP(10,3), no selection
(N = 256)

The behavior radically changes with selection. If selection is applied, both the regression
coeflicient and the ratio estimator become erratic. Half of the time they are negative. This
shows selection with this fitness function works against crossover and vice versa.

For binary functions the heritability can also be estimated by decomposing the genetic
variance. We have already used this method for the ONEMAX function. But the numer-
ical implementation for the general case is prohibitive. The method of decomposing the
variance will numerically be useful if the first term, the additive genetic variance Vj is
sufficient for estimating the heritability. We must postpone this investigation.

To summarize this section: The theory presented is especially applicable for continuous
functions. For many continuous fitness functions the regression coefficient will be 1, the
mazimum possible. For binary functions the regression coefficient and the realized heri-
tability give useful information about the complexity of the fitness landscape and how to
guide the search of the breeder genetic algorithm.



10 Conclusion

Efficient evolutionary algorithms for optimization should be based on the science of breed-
ing animals rather than on natural selection. In this paper we have adapted some of the
scientific methods used by breeders for our Breeder Genetic Algorithm BGA. Some of
the results, already known in the science of breeding, have been extended or made more
precise. Some results presented in this paper, e.g. the optimal mutation rate, are unique
to evolutionary algorithms. The breeder cannot influence mutation or recombination. For
breeding of animals recombination plays the most important part.

The BGA tries to solve the problem of how to scientifically breed a virtual population.
For genetic representations similar to the ones used in population genetics a predictive
theory was developed. But these representations are not the only ones imaginable for
optimization problems. Qur research in the future will concentrate on one of the difficult
problems remaining - how to find a good genetic representation for a given application.
Some representations may also profit from new genetic operators which do not have a
counterpart in nature. An example is the exchange of subtrees which is used in genetic
programming. This operator works on chromosomes of varying length. We will try to
investigate this operator using the framework presented in this paper.
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