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Abstract

The Breeder Genetic Algorithm BGA models arti�cial selection as performed by
human breeders� The science of breeding is based on advanced statistical methods� In
this paper a connection between genetic algorithm theory and the science of breeding is
made� We show how the response to selection equation and the concept of heritability
can be applied to predict the behavior of the BGA� Selection� recombination and
mutation are analyzed within this framework� It is shown that recombination and
mutation are complementary search operators� The theoretical results are obtained
under the assumption of additive gene e�ects� For general �tness landscapes regression
techniques for estimating the heritability are used to analyze and control the BGA�
The method of decomposing the genetic variance into an additive and a nonadditive
part connects the case of additive �tness functions with the general case�

� Introduction

Evolution of natural organisms is based on three major components � reproduction� vari�
ation and selection� Some reproductions of natural organisms occur with �failures� called
mutations� A more systematic variation of the genetic material happens in sexual repro�
duction� Each parent contributes half of its genetic material to the o�spring� This method
of variation is called recombination� The o�spring will be identical to the parents if the
parents are genetically equal�

Variation is necessary to allow selection to work� Selection in nature is very di�cult
to de	ne precisely� The term was introduced by Darwin 
���� very informally� �The
preservation of favourable variations and the rejection of injurious variations� I call Nat�
ural Selection�� But how can an observer predict which are the favorable variations� The
favorable variations are the variations which are preserved� The variations can only be
judged after they have competed in the �struggle for life�� Natural selection is no in�
dependent force of nature� it is the result of the competition of natural organisms for
resources�

In contrast� in the science of breeding the above problem does not exist� The selection
is done by human breeders� Their strategies are based on the assumption that mating
two individuals with high 	tness more likely produces an o�spring of high 	tness than

�appeared in� Evolutionary Computation ��������	�
�� ��

�



two randomly mating individuals� The Breeder Genetic Algorithm BGA introduced in

M�uhlenbein � Schlierkamp�Voosen� ����� is based on the science of breeding� The science
is part of applied statistics� A major component is the parent�o�spring correlation and
the heritability coe�cient�

There is one major di�erence between breeding of natural organisms and the breeder
genetic algorithm� The human breeder has no in�uence on the genetic operators mutation
and recombination� This is done by nature� But evolutionary algorithms have to simulate
the genetic operators� Therefore the genetic operators as well as their frequency of occur�
rence can be implemented to optimize the breeding process� For instance� the mutation
rate used by the breeder genetic algorithm is larger than the one found in nature� With
biotechnology breeders could also potentially begin to control mutation and recombina�
tion� It is interesting to note that as early as ���� breeders had been very enthusiastic
about the possibility of increasing the mutation rate by radiation� But experiments later
showed that this brute force method is not e�ective for breeding animals� The percentage
of lethal mutation was too high�

In this paper we deal initially with a rather simpli	ed model� We assume additive gene
contributions and uniform crossover� Nevertheless 	ve parameters are needed to describe
the initial state of the population and the selection process� The necessary parameters are

� the population size N

� the initial frequency of the desirable allele p�

� the number of loci n

� the mutation rate m

� the intensity of selection I

For this model we will compute the expected number of generations until convergence� It
would be futile to investigate the model with all 	ve parameters variable� Therefore we
will investigate the model with one or more parameters 	xed� The outline of the paper is
as follows�

First we will investigate evolution without selection� also called genetic drift 
I � ���
If there is no mutation the population will converge to a unique genotype� In section three
we will analyze selection and recombination in large populations� The analysis is based
on the response to selection equation and on the concept of heritability� Then selection
and recombination are analyzed in small populations by simulations� In sections 	ve and
six mutation in small and large populations is investigated� In section seven the major
results are summarized and discussed�

The above theory gives a clear picture about the behavior of the major evolutionary
components� For the breeder genetic algorithm this theory plays the same role as the ideal
gas theory for classical thermodynamics� The �ideal gas� in evolutionary algorithms are
simple additive 	tness functions�

The theory will be extended in section eight to more general 	tness functions� The key
concept is estimating the heritability by a regression of o�spring to parent� This result
will be used to estimate the heritability by taking a genetic chance model into account�
This method allows the variance of the 	tness of the population to be decomposed into an
additive genetic component and epistatic interaction components� An important result of



this approach is the proof that only additive 	tness functions have a heritability of one�
All other functions have a heritability less than one�

In the last section we will apply the theory to understand and control the BGA� In a full
BGA all evolutionary components are used� In addition very complex 	tness landscapes
have to be searched� We will show that the regression estimates can be used to predict
the heritability and to e�ectively control the BGA�

Some of the results presented in this paper are also of interest for population genetics�
Our models are restricted to haploid organisms� But in this area our models and equations
are sometimes more precise than the ones used in population genetics� Examples are the
analysis of genetic drift and the analysis of the genetic variance� For a recent survey
about predicting the response to selection in livestock productions see 
Verrier� Colleau �
Foulley� ������

� Evolution without selection � genetic drift

It has been known in population genetics for quite some time that a 	nite population
converges to a single genotype� even if selection is not applied� The mutation rate is
assumed to be negligible� The 	xation of the population is a result of its 	nite size� This
e�ect has been called genetic drift by Wright 
������ The importance of genetic drift for
explaining evolution in nature has been emphasized by Kimura 
������ He developed a
neutral theory of molecular evolution� claiming that natural selection is not as important
for evolution as previously surmized� Kimura used a very complex di�usion equation
approach to quantify genetic drift 
Crow � Kimura� ������ We will generalize his results�
Two chance models will be distinguished

�� no selection� no recombination

�� no selection� but with recombination

The 	rst model is just sampling with replacement� The second model is an adaptation of
Mendel�s genetic chance model to haploid organisms� For the analysis of genetic e�ects
the following cases will be distinguished if necessary�

� one gene with two alleles

� n genes each with two alleles

� n genes with an in	nite number of alleles

The last case roughly models the genetic representation used by the BGA for continuous
functions of n variables� In all cases� recombination is done by randomly choosing an allele
from one of the parents� For binary representations this recombination scheme is called
uniform crossover 
Syswerda� ������

The next three theorems have been derived in 
Asoh � M�uhlenbein� ����b�� The
proofs are based on a Markov chain analysis for one gene with two alleles� The formulas
have been obtained by numerically 	tting the data�

Theorem � Let there be a gene with two alleles� Let half of the initial population have
allele �� the other allele �� Then in a randomly mating population of size N without



mutation and recombination� the expected number of generations until equilibrium GENe

is given by

E
GENe� � ��� �N 
��

If the number of genes or the number of alleles is very large� GENe is only slightly larger�
This is shown in the next theorem�

Theorem � Let the number of genes or alleles be large enough� that the genotypes of the
initial population are all di�erent from each other� Then in a randomly mating population
of size N without mutation and recombination� the expected number of generations until
equilibrium GENe is approximately

E
GENe� � � �N 
��

In table � numerical results from simulations are given� They are averages over ������
runs� Note the very large standard deviation SD�

N � �� 	
 � � �
� 
�� ��

GENe �	�� 
�� ���	 �
��� 
���
 ����� ��	���
SD ��� ���� 		�� �
�� �
��� 
�� �	���

Table �� Gene for a large number of genes

The theorems are in agreement with the results of Crow and Kimura 
������ They
obtained for diploid chromosomes twice as large values� i�e GENe � ���N and GENe �
�N �

The next theorem gives the convergence time if recombination is applied� It is restricted
to binary representations� This theorem is new�

Theorem � Let each gene have two alleles� Let the size of the chromosome be n� the
size of the population be N � Let the initial population be randomly generated� Then for
a randomly mating population with no selection� but with uniform crossover� the expected
number of generations until equilibrium is approximately

E
GENe� � ��� �N � 
��ln
n� � ����� 
��

Table � gives some results of BGA simulations� One clearly observes that GENe increases
linearly with the popsize N and only logarithmically with the size of the problem n� This
result shows that recombination is not able to substantially reduce the in�uence of genetic
drift� We will later show that genetic drift is indeed an important factor if small selection
intensities are used�

The results for an in	nite number of alleles case are qualitatively similar� To summarize
some results obtained by simulations� they show that GENe scales as N � ln
n�� similar
to the binary case� It seems that the value of GENe for an in	nite number of alleles is
about the value of GENe for the binary case with twice as many genes� The popsizes are
held equal�

In the next section we will analyze selection and recombination in large populations�



N
n �� 	
 ��
	
 ���� �	��� 
���
�� ���� ����
 		��

��
 ����� 

��� �����
��
� �
	�� 
���� ����	
��� ����� 
���

Table �� GENe for di�erent n and N � �
� ��� 
� with recombination �two alleles�

� Response to selection

In this section we summarize the theory presented in 
M�uhlenbein � Schlierkamp�Voo�
sen
����b�� The change produced by selection that mainly interests the breeder is the
response to selection� which is symbolized by R� R is de	ned as the di�erence between
the population mean 	tness of generation t� � and the population mean of generation t�
R
t� measures the expected progress of the population�

R
t� � M
t� ���M
t� 
��

where M
t� denotes the average of the population at generation t� Breeders measure the
selection with the selection di�erential� which is symbolized by S� It is de	ned as the
di�erence between the mean 	tness of the selected parents Ms
t� and the mean 	tness of
the population�

S
t� � Ms
t��M
t� 
�

Breeders often use truncation selection or mass selection� In truncation selection with
threshold T � the T � best individuals will be selected as parents� T is normally chosen in
the range ��� to ���

The prediction of the response to selection starts with

R
t� � bt � S
t� 
��

bt is called realized heritability in quantitative genetics� The breeder either measures bt in
previous generations or estimates bt by di�erent methods� Two popular methods based
on the regression of parents to o�spring will be explained later� It is normally assumed
that bt is constant for a certain number of generations� This leads to

R
t� � b � S
t� 
��

There is no genetics involved in this equation� It is simply an extrapolation from direct
observation� The prediction of just one generation is only half the story� The breeder 
and
the GA user� would like to predict the cumulative response Rs for s generations of his
breeding scheme�

Rs �
sX

t��

R
t� � b
sX

t��

S
t� 
��



The response to selection is the product of the heritability and the selection di�erential�
For predicting the response to selection b and the selection di�erential have to be estimated�

If the 	tness values are normal distributed� the selection di�erential S
t� in truncation
selection is approximately given by

S
t� � I � �p
t� 
��

where �p is the phenotypical standard deviation� I is called the selection intensity� The
formula is a feature of the normal distribution� A derivation can be found in 
Bulmer�
������
The science of arti	cial selection consists of estimating b and �p
t�� We just cite the
following theorem 
M�uhlenbein � Schlierkamp�Voosen� ����b�� It was proven for the
ONEMAX function under the assumption that �p
t� has a binomial distribution

�p
t� �
q
n � p
t� � 
�� p
t��

p
t� is the probability of the advantageous allele in the population at generation t�

Theorem � Let the breeder genetic algorithm be run with uniform crossover� If the pop�
ulation is large enough that it converges to the optimum and if the selection intensity I is
greater than �� then the probability of the advantageous bit p
t� is given for the ONEMAX

function by

p
t� � �� �
�
� � sin

�
Ip
n
t � arcsin
�p� � ��

��

���

The number of generations needed until equilibrium is approximate

GENe �

�
�

�
� arcsin
�p� � ��

�
�
p
n

I

���

p� � p
�� denotes the probability of the advantageous bit in the initial population�

We next compare the analytical results with simulations� In 	gure � the mean 	tness
versus the number of generations is shown for three popsizes N � ����� ��� and ��� The
selection intensity is I � ���� the size of the problem n � ��� The initial population was
generated with p� � �����

A closer look at the simulation results show that the phenotypic variance is slightly
less than given by the binomial distribution� The empirical data is better 	tted if the
following estimate is used

 �p
t� �
�

���

q
n � p
t� � 
�� p
t�� 
���

Using this variance one obtains the equations

 R
t� �
�

���
� I �
q
n � p
t�
�� p
t�� 
���

 GENe �
���

�

�
�

�
� arcsin
�p� � ��

�
�
p
n

I

���
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Figure �� Mean �tness for various N �T � ���� p� � ��
��� N � 
� converges �rst�

The 	t of equation �� and the simulation run with N � ���� is very good� For N � ��
and N � �� the population does not converge to the optimum� These popsizes are less
than the critical popsize N�
I� n� p��� The critical popsize is de	ned to be the minimum
popsize that the BGA converges with high probability to the optimum� The problem of
determining the critical popsize will be discussed later�

We have not been able to prove a similar theorem for an in	nite number of alleles� The
di�culty lies in estimating the variance of the population� We will give some simulation
results in the next section�

For proportionate selection which is used by the simple genetic algorithm we extend
the theorem already proven in 
M�uhlenbein � Schlierkamp�Voosen� ����b��

Theorem � For a genetic algorithm using proportionate selection the selection di�erential
is given by

S
t� �
��p
t�

M
t�

��

For the ONEMAX function of size n the response to selection can be computed from

R
t� � �� p
t� 
���

If the population is large enough� the number of generations until p
t� � �� � is given for
large n by

GEN��� � n � ln�� p�
�


���

p� is the probability of the advantageous allele in the initial population�

Proof We will only prove ��� For ONEMAX
n� we have R
t� � S
t�� As before we
approximate the variance by the variance of the binomial distribution



��p
t� � np
t�
�� p
t�� 
���

Because M
t� � np
t�� equation �� is obtained� From R
t� � n
p
t���� p
t�� we get the
di�erence equation

p
t� �� �
�

n
� 
�� �

n
�p
t� 
���

This equation has the solution

p
t� �
�

n

�
� � 
�� �

n
� � � � �� 
�� �

n
�t��
�
� 
�� �

n
�tp�

This equation can be simpli	ed to

p
t� � �� 
�� �

n
�t
�� p��

By setting p
GEN���� � �� � equation �� is easily obtained�

This theorem shows the problem of proportionate selection� It selects too weak if the
population approaches the optimum�

Both theorems of this section assume large popsizes� In the next section we will analyze
small populations by simulations�

� Analysis of recombination in small populations

We have not been able to analytically estimate the time to convergence for arbitrary
population size N � Therefore we will use simulations in this section� First we will explain
the behavior of the recombination operator for the binary ONEMAX
n� function� In
	gure � the number of generations GENe until equilibrium and the size of the population
N are displayed� The problem size is ��� The initial population was randomly generated
with probability p� � ��� of the advantageous allele� The data are averages over ��� runs�

The 	gure can be divided into two areas� The 	rst area can be called the saturation
region� The population size is large enough so that the population converges to the opti�
mum value� In this area GENe is constant� It can be predicted from equation �� � For
small popsizes GENe increases with the size of the population� The popsizes are too small
to reach the optimum� But the quality of the 	nal solution gets better with increasing
popsize� This is the major reason for the increase of GENe�

The two regions are separated by a line which is given by the critical population size
N�� It is the minimal population size so that the population converges to the optimum�
N� depends on the selection intensity I � the size of the problem and the initial population�
The relation between N� and I is especially di�cult� N� increases for small and large
selection intensities I � The increase of N� with decreasing I for I � ��� seems surprising�
The explanation for this behavior is genetic drift� If the popsize is too small� the variation
of the population will be substantially reduced by genetic drift� The population will
not converge to the optimum� The problem of estimating N� is very di�cult because
the transition from region � to the saturation region is very slow� In 
M�uhlenbein �
Schlierkamp�Voosen� ����b� it was conjectured that for p� � ��
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Figure �� GENe vs population size N for p� � ���� The critical popsize N� is indicated by a dashed line�

N� � p
n � ln
n� � f
I� 
���

We have not yet made enough experiments to con	rm the above formula� Very small
selection 
I � �� de	nes the left boundary� This area is called genetic drift� It has already
been investigated in section two� Here GENe increases at the rate O
N � ln
n��

From GENe the number of function evaluations FE till convergence can be easily
computed by

FEe � N �GENe

The minimum number FE�
e is given by

FE�
e � min

I
fN� �GENeg

For the ONEMAX function FE�
e is a �at minimum� The minimum is found at

about I � �� But FE�
e does not di�er much in the range ��� � I � ���� This shows

that the e�ciency of the search does not crititically depend on the truncation threshold

M�uhlenbein � Schlierkamp�Voosen� ����b��

Slightly di�erent results are obtained in the case of an in	nite number of alleles� Here
the critical popsize is in	nite� Therefore a saturation area does not exist� The number of
generations until convergence increases� but the quality of the 	nal solution also improves�
We take as example the optimization of the negative hypersphere in �� dimensions�

F�
x� � �
nX
i

x�i

Simulations show that GENe for truncation thresholds of T � �� increases only loga�
rithmic in the size of the population N � This is surprisingly small� The major di�erence



between binary alleles and an in	nite number of alleles is shown in 	gure �� For the
simulations we used a BGA with discrete recombination� Five curves are displayed which
show the increase of the average 	tness for a single run� The mean 	tness is displayed
on a logarithmic scale� In all runs the mean 	tness increases linearly till shortly before
equilibrium� Therefore� mathematically� our recombination method has a linear order of
convergence� The increase of the mean 	tness is only dependent on the selection thresh�
old� Severe selection leads to a larger slope� but the 	nal 	tness achieved with the same
popsize is lower� Better 	nal 	tness values can be achieved by increasing the population
size or decreasing the search domain� Note that decreasing the search domain from !��� �"
to !����� ���" gives better results than increasing the population size from �� to �����
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Figure �� Mean �tness for thresholds T � ��� and ����� and N � ��� and ����� Note that the
mean �tness is displayed on a logarithmic scale� The increase of the mean �tness mainly depends on the
truncation threshold� Severe selection leads to a larger gradient of the mean �tness� but the best �tness
achieved is lower� Smaller populations converge faster� but also to a smaller �tness value�

For continuous functions more speci	c recombination methods can be applied which
for instance arithmetically combine the two alleles of the parents� In the BGA we mainly
use line recombination 
M�uhlenbein � Schlierkamp�Voosen� ����b�� In this method the
o�spring is randomly placed on the straight line which connects the two parent points�
Simulations show that the behavior of line recombination is very similar to discrete re�
combination� For a given population size the number of generations until convergence is
larger but the quality of the solution is also better� The total amount of function evalua�
tions to obtain the same quality of solution seems to be the same for both recombination
methods� We will investigate several recombination methods for continuous functions in
a forthcoming paper�

The results of this section can be summarized as follows� Recombination is an e�ective
search operator in large populations with binary genes� For continuous functions recom�
bination has linear order of convergence� But the optimum is only reached by an in	nite
population� Therefore recombination should not be used as the only search operator for
continuous 	tness functions�



� Analysis of strong selection and mutation

The mutation operator with a small number of parents is well understood� In principle
it is just a problem of statistics � doing N trials in parallel instead of in a sequence� But
selection converts the problem to a nonstandard statistical problem�

In this section we will analyse the behavior of mutation if the best individual only is
used as parent of the next generation� This can be done in an elitist or non�elitist way�
Elitist means that the former parent stays alive if all o�spring are worse than the parent�
In evolution strategies these two strategies are called the plus strategy 
�
 
elitist� and the
comma strategy 
�
 
B�ack � Schwefel� ������ The simplest strategy is the 
�����strategy�
It uses one parent and one o�spring� The 	tter of the two survives�

In 
M�uhlenbein� ����# M�uhlenbein� ������ we computed the probability of a successful
mutation for a single individual� From this analysis the optimal mutation rate was ob�
tained� The optimal mutation rate maximizes the probability of a success� We just state
the most important results�

Theorem � For the ONEMAX function of size n the optimal mutation rate m is propor�
tional to the size of the problem�

m �
�

n

This important result has been independently discovered several times� The implica�
tions of this result to biology and to evolutionary algorithms have been 	rst investigated
by 
Bremermann� Rogson � Sala�� ������

The performance of recombination was measured by GENe� the number of generations
until equilibrium� This measure cannot be used for mutation because the population will
never converge to a unique genotype� Therefore we will use GENopt as performance
measure for the mutation operator� It is de	ned as the average number of generations
till the optimum has been found for the 	rst time� For a population with two individuals

one parent and one o�spring� GENopt has been computed by a Markov chain analysis

M�uhlenbein� ����# M�uhlenbein� ������ In this case GENopt is equal to FEopt� the number
of trials to reach the optimum�

Theorem � Let p� be the probability of the advantageous allele in the initial string� Then
the 
� � ��� strategy needs on the average the following number of trials FEopt

FEopt � e � n
���p��nX
j��

�

j

���

to reach the optimum of the ONEMAX function of size n� The mutation rate is set to
m � ��n�

Proof We only sketch the proof� Let the given string have one incorrect bit left� Then the
probability of switching this bit is given by

s� � m � 
��m�n�� � e�� �m 
���

The number of trials to obtain the optimum is given by e � ��m� Similarly if two bits
are incorrect� then the number of trials needed to get one bit correct is given by e�� � ��m�



The total number is obtained by summation�

Equation �� can be approximated by

FEopt � e � n � 
ln 

�� p��n� � 	� 
���

We have con	rmed the formula by intensive simulations 
M�uhlenbein� ������ Recently
B�ack 
����� has shown that FEopt can be only marginally reduced if a theoretically optimal
variable mutation rate is used� This variable rate depends on the number of bits yet to be
corrected� This result has been predicted in 
M�uhlenbein� ������ Mutation spends most
of the time in adjusting the very last bits� But in this region the optimal mutation rate is
m � ��n�

Theorem � cannot easily be extended to a larger number of o�spring� Therefore we
will only qualitatively discuss this problem by simulations� Some results are displayed in
table �� One clearly observes the law of diminishing returns� Increasing the popsize N
reduces GENopt less and less� Mutation is most e�cient with a small number of o�spring�

The non�elitist 
�� N� strategy has an interesting behavior� For very small N the
strategy is almost a random walk� It requires a huge number of generations to randomly
hit the optimum� For large N the comma strategy becomes similar to the plus strategy�
There will always be an o�spring of higher 	tness than the parent� This shows that for
the 
�� N��strategy there exists a unique N 
 � where the population needs the minimum
number of function evaluations until convergence� For the 
� �N��strategy this number
is N � ��

N 
 � � �� 	
 �� �
� 
�� ��
 ��
�
���N� ��� ��� 
�� ��� �� �� 	� 	� 
� 
	
���N� � � 
�� ��
 � �� 	� 	� 
� 
	
S���N� 
�� 	��� ��� �	�� 
� 	� �� �� �� ��

Table �� GENopt and speedup S for mutation from one parent �ONEMAX������

The speedup S shows how much faster the solution is obtained with a larger number of
o�spring� It is de	ned as GENopt
���GENopt
N�� The speedup is almost linear for small
N and seems to slow down to a logarithmic function� This indicates that mutation is not
an e�cient search in a large population� We will show in the next section that smaller
selection intensities give still worse results�

The BGA mutation scheme for continuous functions has been analyzed in 
M�uhlenbein
� Schlierkamp�Voosen� ����b�� It was shown that the 
� � ���strategy with the BGA
mutation scheme has linear order of convergence� The same order of convergence was
proven in the previous sections for discrete recombination�

� Small truncation selection and mutation

First we will compare the severe selection of the previous section 
only one individual is
selected as parent� with constant truncation selection� In 	gure � the relation between



GENopt� FEopt� and the popsize N is displayed for these two selection methods� The selec�
tion thresholds are T � �� and the smallest one possible� T � ��N � In large populations
the strong selection outperforms the 	xed selection scheme by far� These results can easily
be explained� The mutation operator will change one bit on the average� The probability
of a success becomes less the nearer the population comes to the optimum� Therefore the
best strategy is to take just the best individual as parent of the next generation�
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Figure �� GENopt and function evaluations �FE� for various N and di�erent T �ONEMAX�
���

From GENopt the expected number of trials needed to 	nd the optimum can be computed

FEopt � N �GENopt

For both selection methods� FEopt increases linearly with N for large N � The increase
is much smaller for strong selection� The smallest number of function evaluations are
obtained for N � ��

We now turn to the theoretical analysis of mutation and truncation selection in a large
population� The analysis depends on an extension of the response to selection equation�

Theorem 	 Let st be the probability of a mutation success� imp the average improvement
of a successful mutation� Let ft be the probability that the o�spring is worse than the
parent� red the average reduction of the 	tness� Then the response to selection for small
mutations in large populations is given by

R
t� � S
t� � st � imp� ft � red 
���

S
t� is the average 	tness of the selected parents�

Proof Let Ms
t� be the average of the selected parents� Then

M
t� �� � st
Ms
t� � imp� � ft
Ms
t�� red� � 
�� st � ft�Ms
t�

Subtracting M
t� from both sides of the equation we obtain the theorem�

The response to selection equation for mutation contains no heritability� Instead there
is an o�set� de	ned by the di�erence of the probabilities of getting better or worse� The



importance of st and ft has been independently discovered by Scha�er � Eshelman� 
������
They did not use the di�erence of the probabilities� but the quotient which they called
the safety factor�

F �
st
ft

In order to obtain an empirical law we have to estimate st and ft� This can be done by
using the results of 
M�uhlenbein� ������ The estimation requires the average number i of
wrong bits of the parent strings as input� But i can be easily transformed into a variable
depending on the state of the population at generation t� This variable is the marginal
probability p
t� that there is the advantageous allele at a locus� p
t� was already used in
the previous theorems� i and p
t� are connected by

i � n � 
�� p
t�� � n�M
t� 
��

The following empirical law will be derived by a mixture of statistical analysis and simu�
lation results�

Empirical Law � For a truncation threshold of T � ��� a mutation rate of m � ��n�
and n� � the response to selection of a large population changing by mutation is approx�
imately

R
t� � � � 
�� p
t��e�p�t� � p
t�e����p�t�� 
���

Proof Let each parent have i bits wrong� let si be the probability of a success by mutation�
fi be the probability of a defect mutation� si is approximately given by the product of
changing at least one of the wrong bits while not changing an correct bit �Muhlenbein�
������ Therefore

si � 
��m�n�i
�� 
��m�i�

Similarly
fi � 
��m�i
�� 
��m�n�i�

We now turn to the population at generation t� From equation �� and �� 
��m�i � i �m
we obtain

st � 
�� p
t��
�� �

n
�np�t�

ft � p
t�
�� �

n
�n���p�t��

Because 
�� �
n�

n � e�� we get

st � 
�� p
t�� e�p�t�

ft � p
t�e����p�t��

We are left with the problem of estimating imp and red� In a 	rst approximation we
set both to � because a mutation rate of m � ��n changes one bit on the average� We
have not been able to estimate S�t� analytically� Simulations show that for T � �� S�t�



decreases from about ���� at the beginning to about ��� at GENopt� Therefore S
t� � � is
a reasonable approximation� This completes the proof�

Equation �� de	nes a di�erence equation for p
t � ��� We did not succeed in solving it
analytically� We have found that the following linear approximation gives almost the same
results

Empirical Law � Under the assumptions of empirical law � the response to selection can
be approximated by

R
t� � �� �p
t� 
���

The number of generations until p
t� � �� � is reached is given by

GEN��� � n

�
� ln�� p�

�

���

Proof
The proof is identical to the proof of theorem ��

In 	gure  the development of the mean 	tness is shown� The simulations have been
done with two popsizes 
N � ���� and ��� and two mutation rates 
m � ��n and ��n��
The agreement between theory and simulation is fairly good� The evolution of the mean
	tness of the large population and the small population is more or less the same� if the
same mutation rate and the same truncation threshold is used� This result demonstrates
that a large population is computationally ine�cient for mutation�
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Figure � Mean �tness for small and large N and mutation rates of ��n and ��n �p� � ��
��� The
population size has no in�uence on the increase of the mean�tness� The mean �tness of the population
with mutation rate ��n increases faster� but the increase stops at generation ���

A large mutation rate has an interesting e�ect� The mean 	tness increases faster
at the beginning� but the population never 	nds the optimum� This observation again
suggests using a variable mutation rate� But we have already mentioned that the increase
in performance by using a variable mutation rate is rather small� Mutation spends most



of its time in getting the last bits correct� But in this region a mutation rate of m � ��n
is optimal�

The major results of the last two sections can be summarized as follows� Mutation
in large populations is not e�ective� It is more e�cient with very strong selection� The
response to selection becomes very small when the population is approaching the optimum�
The e�ciency of the mutation operator critically depends on the mutation rate�

� Summary of the major results

Let n denote the number of genes� N the size of the population� Any 	nite population
of size N will converge to a single genotype� even if selection is not applied� This e�ect
is called genetic drift� The expected number of generations until convergence GENe is
surprisingly low�

E
GENe� � ��� �N � 
��ln
n� � ����� 
���

The above equation is valid for recombination without selection and mutation� We now
turn to truncation selection� If the size N of the population is larger than the critical
popsize N�� the minimum popsize to converge to the optimum with high probability� then
we have for the expected number of generations until convergence

GENe �
�
�

�
� arcsin
�p� � ��

�
�
p
n

I

���

In the above equation the mutation rate is set to �� Note that GENe is independent of
N � The estimation of the critical popsize is very di�cult� We conjecture

N� � p
n � ln
n� � f�
p�� � f�
I� 
���

Proportional selection as used by the simple GA 
Goldberg� ����� selects too weakly
when the variance of the population becomes small� The expected number of generations
GEN����n until the favorable allele is distributed in the population with probability of
�� ��n is given by

GEN����n � n � ln
n � 
�� p��� 
���

This equation is valid for a mutation rate of �� The number of generations is much larger
than with truncation selection� The analysis of recombination in small populations is
di�cult� We have shown some results in phase diagrams relating the posize and GENe�
The phase diagrams can be divided into two areas� The border is given by the critical
popsize N��
We now turn to populations using only mutation� Mutation is a random search operator
especially e�cient in small populations� The most important result concerns the mutation
rate� The mutation rate is de	ned as the probability of mutating a gene�

Rule of thumb
 The mutation rate m � ��n where n is the size of the chromosome
is almost optimal �



For the above mutation rate the expected number of generations GENopt until the
optimum is found has been computed for the 
�� ���strategy 
one parent� one o�spring#
the better of the two survives��

GENopt � e � n � 
ln
n � 
�� p��� � 	� 
���

Mutation in a large population is ine�cient� The asymptotic scaling of GENopt is inde�
pendent of the popsize N � It stays at O
n � ln
n��� For very large popsizes GENopt is
given by

GEN����n �
n

�
� ln
n � 
�� p��� 
���

The above equation is valid for a large population and a truncation selection threshold of
T � ��� Note that the above value is about half the value of proportional selection�

The above theorems show that for binary representations populations using either
recombination or mutation are able to locate the optimum� If p� � �� i�e� half of the bits
are correct in the initial population� the asymptotic order of the number of trials needed

FEopt�� seems to be the same� namely O
n � ln
n��� For recombination this number
is obtained by multiplying GEN with the critical popsize N�� Therefore the question
which of the two operators is more e�cient is di�cult to answer� The comparison needs
an exact expression for N�� which we have not yet obtained� But we can easily make
a qualitative comparison� The major di�erence between mutation and recombination is
their dependence on p�� the percentage of the desired allele in the initial population�

Let us take p� � �� ��n as example� Here one bit is wrong on the average� Mutation
will need about O
n� trials to change the incorrect bit� Uniform crossover of two strings�
each with one bit wrong� will generate the optimum string with probability ���� indepen�
dent of the size of the problem� Therefore the critical popsize N� is also independent of n�
Thus recombination is much more e�cient than mutation� But the determination of the
exact N� is also di�cult in this simple case� It will need on the average � trials to generate
the optimum� But the probability that a popsize of � will not generate the optimum is
���� � ����� It needs �� trials in order to obtain the optimum with ��� probability�

If we take p� � ��n the situation is reversed� Now mutation is much more e�cient than
recombination which needs a huge popsize in order to locate the optimum� This behavior
can also be found in individual runs� By comparing 	gures � and  one observes that
the increase of the average 	tness of a population using mutation is better than that of
a population using recombination when far away from the optimum� Recombination has
too few building blocks to generate better o�spring� But recombination is more e�ective
than mutation nearby the optimum� Here the likelihood of success of mutation is much
lower�

A more detailed comparison between mutation and recombination� also by means of
a competition between populations can be found in 
M�uhlenbein � Schlierkamp�Voosen�
����a�� The question now arises how to combine mutation and recombination so that the
resulting algorithm is more e�ective than an algorithm using a single genetic operator�
We see two approaches at least�

In the 	rst approach� an optimal mutation rate is constantly applied� The variance
of the population remains high enough for recombination to be e�ective� This method is
normally used by the BGA� The second approach is mainly based on recombination� If the
variance is below a certain threshold the population is thoroughly changed by applying



mutation vigorously� This event gives recombination the chance for further improvements�
This approach is used by Eshelman 
����� in the CHC algorithm� The success of this
procedure depends on the right amount of change� If too much is changed then this would
be just a new start of the algorithm� If the changes are too small then the population will
stay in equilibrium�

Most of our analytical results have been derived under the assumption of additive ge�
netic e�ects� This theory explains the behavior of the most important evolutionary forces�
It plays a similar role for the BGA as the �ideal gas� theory for thermodynamics� There
exists no ideal gas in reality� but the ideal gas theory gives much insight into the overall
behavior of gases� In order to understand evolutionary algorithms in more complex 	tness
landscapes� we have to extend the theory by using more advanced statistical methods�
This is the topic of the next section�

	 Statistics and genetics

In this section we will present two methods for estimating the heritability� The 	rst one
will use the concept of regression of o�spring to parent and the second one the concept
of genetic variance� Both methods have been of great importance in the development of
statistics and population genetics� Therefore we will 	rst give a short historical survey�

Genetics represents one of the most satisfying applications of statistical methods� Mod�
ern statistics starts with Galton and Pearson who found at the end of the last century
a striking empirical regularity� On the average a son is halfway between his father and
the overall average height for sons� They used data from about ���� families� In order
to see this regularity Galton and Pearson invented the scatter diagram� regression and
correlation 
see Freedman et al�� ������

Independently Mendel found some other striking empirical regularities like the reap�
pearance of a recessive trait in one�fourth of the second generation hybrids� He made up
a chance model involving what are now called genes to explain his rules� He conjectured
these genes by pure reasoning � he never saw any�

At 	rst sight� the Galton�Pearson results look very di�erent from Mendel�s� and it is
hard to see how they can be explained by the same biological mechanism� Indeed Pearson
wrote an article in ���� claiming that his results cannot be derived by Mendel�s laws�
About ���� Fisher� Wright and Haldane more or less simultaneously recognized the need
to recast the Darwinian theory as described by Galton and Pearson in Mendelian terms�
They succeeded in this task� but unfortunately much of the original work is abstruse and
very di�cult to follow� The di�culty lies in the exact de	nition of genetic variance and its
connection to heritability� We will in this section adapt the classical methods to haploid
chromosomes� Furthermore we will precisely de	ne the concepts�

The 	rst theorem connects the realized heritability bt � R
t��S
t� with the regression
coe�cient between midparent and o�spring� Let fi� fj be the phenotypic values of parents
i and j� then

$fi�j �
fi � fj

�

is called the midparent value� Let the stochastic variable $F denote the midparent value�



Theorem � Let F 
t� � 
f�� � � � � fN� be the population at generation t� where fi denotes
the phenotypic value of individual i� Assume that an o�spring generation O
t� is created
by random mating� without selection� If the regression equation

oij
t� � a
t� � b �FO
t� �
fi � fj

�
� �ij 
��

with

E
�ij� � �

is valid� where oij is the 	tness value of the o�spring of i and j� then

b �FO
t� � bt 
���

Proof From the regression equation we obtain for the expected averages

E
O
t�� � a
t� � b �FO
t�M
t�

Because the o�spring generation is created by random mating without selection� the ex�
pected average 	tness remains constant

E
O
t�� � M
t�

Let us now select a subset as parents� The parents will be randomly mated� producing the
o�spring generation� If the subset is large enough� we may use the regression equation and
obtain for the averages

M
t� �� � a
t� � b �FO
t� �Ms
t�

Here M
t � �� is the average 	tness of the o�spring generation produced by the selected
parents� Subtracting the above equations we obtain

M
t � ���M
t� � b �FO
t� � 
Ms
t��M
t��

This proves b �FO
t� � bt�

The importance of regression for estimating the heritability was discovered by Galton and
Pearson� They computed the regression coe�cient rather intuitively by scatter diagrams
of midparent and o�spring 
see Freedman et al�� ������ The problem of computing a good
regression coe�cient is solved by the theorem of Gauss�Markov� We just cite the theorem�
The proof can be found in any textbook on statistics 
Rao� ������

Theorem �� A good estimate for the regression coe�cient of midparent and o�spring is
given by

b �FO
t� �
cov
O
t�� $F
t��

var
 $F 
t��

���



The covariance of O and $F is de	ned by

cov
O
t�� $F
t�� �
�

N

X
i�j


oi�j � av
O
t��� � 
 $fi�j � av
 $F 
t���

av denotes the average and var the variance� Closely related to the regression coe�cient
is the correlation coe�cient cor
 $F�O�� It is given by

cor
 $F
t�� O
t�� � b �FO
t� � 

var
 $F 
t��

var
O
t��
����

The above theorem enables us to estimate the heritability by a second method� It works
as follows� For a large sample population F the o�spring have to be created by random
mating� Then the regression coe�cient b �FO can be computed by equation ��� This
procedure is more robust than dividing R
t� by S
t�� First� it works also in the case of
small selection intensity� Second� the trustworthiness of the computation can be estimated
by statistical techniques�

By the above method an average value for the heritability is computed� The average
is taken over the whole domain� For the breeder genetic algorithm we decided to proceed
slightly di�erently� The regression coe�cient is only computed for the selected parents
and their o�spring� This local approximation makes it possible to compute regression
coe�cients which depend on the given population and the local 	tness landscape�

The next theorem shows the connection between midparent and parent regression�

Theorem �� Midparent and parent regression are connected by

bFO
t� � �� � b �FO
t� cor
F 
t�� O
t�� �

r
�

�
cor
 $F
t�� O
t�� 
���

Proof We have
cov
O
t�� $F
t�� � cov
O
t�� F 
t��

var
 $F 
t�� � �� � var
F 
t��
From ���� the theorem is obtained�

We now describe a method for estimating the covariance� This method connects a
microscopic genetic chance model and the macroscopic phenotypic covariance� It is re�
stricted to discrete genes� In this paper we only give the necessary de	nitions and the
fundamental theorem� The interested reader is refered to Asoh and M�uhlenbein 
����a�
where the proof can be found� A detailed computation is given for a diploid chromosome
with two genes in 
Crow � Kimura� ������

Let a haploid chromosome with n binary genes xi be given� f
x� its 	tness� Let the
genetic chance model be de	ned by uniform crossover� This model can be considered as
Mendel�s chance model restricted to haploid chromosomes� We will decompose the 	tness
value f
x� recursively into an additive part and interaction parts� Let p
x� denote the
probability of x� p
xjxi� the conditional probability of x given xi� First we extract the
average�

f
x� � av
f� � r�
x� 
���



Then we extract the 	rst order 
additive� part from the residual r�
x��

r�
x� �
nX

i��

f�i�
xi� � r�
x� 
���

where f�i�
xi� are given by

f�i�
xi� �
X
xjxi

p
xjxi�r�
x� �
X
xjxi

p
xjxi�f
x�� av
f�

Here
P
xjxi means that the i�th locus is 	xed to the value xi� The f�i�
xi� minimize the

quadratic error
P
x
p
x�r�
x�

��
If r�
x� �	 �� we can proceed further to extract the second order terms from r�
x��

r�
x� �
X
�i�j�

i�j

f�i�j�
xi� xj� � r�
x� 
���

where

f�i�j�
xi� xj� �
X

xjxi�xj

p
xjxi� xj� r�
x�

�
X

xjxi�xj

p
xjxi� xj� f
x�� f�i�
xi�� f�j�
xj�

If we have n loci� we can iterate this procedure n� � times recursively and 	nally we get
the decomposition of f as

f
x� � $f �
X
i

f�i�
xi� �
X
�i�j�

f�i�j�
xi� xj� � � � �

�
X

�i������in�� �

i������in��

f�i������in���
xi� � ���� xin��� � rn��
x�

Let Vk for k � � to n � � be de	ned as

Vk �
X

�ii�����ik �

i������ik

X
xi� �����xik

p
xi�� ���� xik�f�ii�����ik�
xii� ���� xik�
�� 
���

and
Vn �

X
x

p
x�rn��
x�
� 
���

We are now able to formulate the fundamental theorem�

Theorem �� Let the population be in linkage equilibrium i�e�

p
x� �
nY
i��

pi
xi� 
���

Then the variance of the population is given by

var
F � � V� � V� � � � �� Vn�� � Vn 
��



The covariance of midparent and o�spring can be computed from

cov
 $F� o� �
�

�
V� �

�

�
V� � � � �� �

�n
Vn �

nX
k��

�

�k
Vk 
���

From theorems �� and �� we obtain

Corollary � If the 	tness function is additive that is� f
x� �
P

i fi
xi�� then

cor
 $F�O� �
q
��� b �FO � � 
���

The above theorem plays an important role in the science of breeding� Breeders conjecture
that the additive genetic variance V� is the most important factor of the heritability� The
higher order interactions contribute much less to the heritability� Therefore they can be
neglected� We will test this conjecture in a forthcoming paper�

Numerically� decomposing the variance is computationally far too expensive to be of
use for the breeder genetic algorithm� But the regression technique is very simple to
implement� We will show in the next section that the regression technique can be used to
control and guide the breeder genetic algorithm�


 Numerical applications of the theory

From statistics and population genetics it is known that the regression coe�cient should
be a reliable estimate for heritability in the case of continuous 	tness functions and large
populations� Therefore as a 	rst example we take the minimization of the hypersphere�
The BGA for continuous functions has been described in 
M�uhlenbein � Schlierkamp�
Voosen� ����b�� It uses a �oating point representation� In 	gure � scatter diagrams of
midparent and o�spring at generation � and �� are shown� In this example only discrete
recombination is used� no mutation� It is easily seen that the whole population is moving
towards the global minimum� which is � in this example� The regression coe�cient is
almost exactly one in both diagrams as predicted by the theory�

In 	gure � the numerical values of the two di�erent estimates for the heritability are
shown 
R
t��S
t� and the regression coe�cient�� Both estimates oscillate around � as
predicted� The correlation coe�cient is about ��� This is less than the maximum value
possible� which is

p
��� The reason for this di�erence is the selection� The selection

reduces the variance of the parents and therefore the correlation coe�cient�
We just report the results for a simulation run without selection� In this case the

R
t��S
t� estimator cannot be used because S
t� is about �� The regression coe�cient
can be computed as usual and remains �� Furthermore the correlation coe�cient is aboutp
�� as predicted by the theory�
The above results are not restricted to simple unimodal functions� As the next example

we take the highly multimodal function which is known as Schwefel�s function F� �

F	 �
nX
�

�xi sin
�q

jxij
�

� �� � xi � �� 
���

The theory predicts that the multimodality of this function can be considered more or
less as noise for the BGA� It should have no major in�uence on the regression coe�cient�
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Figure �� Scatter diagrams for generations � and �� for the hypersphere� Only discrete recombination is
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5 10 15 20 25 30
gen0

0.5

1

1.5

2

b

5 10 15 20 25 30
gen0

0.2

0.4

0.6

0.8

1

r

Figure �� Heritability estimates �regression coe�cient solid line� R�t��S�t� dashed line� and correlation
coe�cient r for the hypersphere �N������T������

Indeed� with random mating� the regression coe�cient is � and the correlation coe�cient
between midparent and parent is about

p
��� just as for the hypersphere� Figure � shows a

real BGA simulation run with selection� recombination andmutation� One clearly observes
that the search is 	rst driven by recombination� then by mutation� From generation ��
on� the regression coe�cient substantially di�ers from the ratio estimator R
t��S
t�� Now
the search is mainly driven by the random operator mutation� The BGA mutation scheme
is described in 
M�uhlenbein � Schlierkamp�Voosen� ������
Next we turn to binary functions� We take as examples

� ONEMAX
n�

� PLATEAU
�����

� DECEP
�����



5 10 15 20 25 30
gen0

0.5

1

1.5

2

b

5 10 15 20 25 30
gen0

0.2

0.4

0.6

0.8

1

r

Figure �� Heritability estimates b with mutation and recombination �N � ��
�� The correlation coe�	
cient r drops to zero� The regression coe�cient �solid line� and the ratio estimator �dashed line� are almost
equal at the beginning� Then the ratio R�t��S�t� goes to zero whereas the regression coe�cient remains
high till generation ���

PLATEAU
��� �� has a string length n of ��� An increase in 	tness is allocated only if
three consecutive bits at loci �������� are ��s� In each case� the 	tness is increased by ��
DECEP 
��� �� is the deceptive function de	ned by Goldberg 
M�uhlenbein� ������

In 	gure � the results of a BGA run are shown for ONEMAX
��� with a truncation
threshold of T � �� and uniform crossover� but without mutation� The two heritability
estimates coincide fairly well� They are about �� as predicted� The correlation coe�cient is
about �� till generation ��� This is less than the correlation coe�cient without selection�
which is

p
��� At the end of the run the correlation coe�cient increases� This behavior

indicates that the genotypes of the selected parents are becoming very similar� Therefore
the o�spring are very similar to both parents�

2 4 6 8 10 12 14 16
gen0

0.5

1

1.5

2

b

2 4 6 8 10 12 14 16
gen0

0.2

0.4

0.6

0.8

1

r

Figure �� Heritability b estimates �regression coe�cient solid line� R�t��S�t� dashed line� and correlation
coe�cient r with recombination only for ONEMAX�
�� �N � ���� T � ����

Our next example is the PLATEAU function� We will discuss PLATEAU
����� and
PLATEAU
����� PLATEAU
���� has a plateau of size � therefore it is more di�cult
to optimize� Without selection the regression coe�cients for the two functions are about
��� and ���� the correlation coe�cients are about �� and ���� In 	gure �� we have used
a truncation threshold of T � ��� For both functions the regression coe�cients are
substantially higher than without selection� This indicates that selection is very e�ective
for this 	tness function� But note that the realized heritability R
t��S
t� is considerably
smaller than the regression coe�cient� For PLATEAU
���� it substantially increases



during the run�
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Figure ��� Heritability b estimates �regression coe�cient solid line� for PLATEAU������ and ������

The last example is the deceptive function DECEP
������ This function is called de�
ceptive� because the search is guided into the local optimum 
�� �� ��� The global optimum
is at 
�� �� ��� Without selection� the regression coe�cient is about �� and the correlation
coe�cient about ���� This is shown in 	gure ���
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Figure ��� Heritability b and correlation r estimate with recombination for DECEP������� no selection
�N � ��
�

The behavior radically changes with selection� If selection is applied� both the regression
coe�cient and the ratio estimator become erratic� Half of the time they are negative� This
shows selection with this 	tness function works against crossover and vice versa�

For binary functions the heritability can also be estimated by decomposing the genetic
variance� We have already used this method for the ONEMAX function� But the numer�
ical implementation for the general case is prohibitive� The method of decomposing the
variance will numerically be useful if the 	rst term� the additive genetic variance V� is
su�cient for estimating the heritability� We must postpone this investigation�

To summarize this section�The theory presented is especially applicable for continuous
functions� For many continuous 	tness functions the regression coe�cient will be �� the
maximum possible� For binary functions the regression coe�cient and the realized heri�
tability give useful information about the complexity of the 	tness landscape and how to
guide the search of the breeder genetic algorithm�



�� Conclusion

E�cient evolutionary algorithms for optimization should be based on the science of breed�
ing animals rather than on natural selection� In this paper we have adapted some of the
scienti	c methods used by breeders for our Breeder Genetic Algorithm BGA� Some of
the results� already known in the science of breeding� have been extended or made more
precise� Some results presented in this paper� e�g� the optimal mutation rate� are unique
to evolutionary algorithms� The breeder cannot in�uence mutation or recombination� For
breeding of animals recombination plays the most important part�

The BGA tries to solve the problem of how to scienti	cally breed a virtual population�
For genetic representations similar to the ones used in population genetics a predictive
theory was developed� But these representations are not the only ones imaginable for
optimization problems� Our research in the future will concentrate on one of the di�cult
problems remaining � how to 	nd a good genetic representation for a given application�
Some representations may also pro	t from new genetic operators which do not have a
counterpart in nature� An example is the exchange of subtrees which is used in genetic
programming� This operator works on chromosomes of varying length� We will try to
investigate this operator using the framework presented in this paper�
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