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Abstract

The Breeder Genetic Algorithm (BGA) was designed according to the theories and methods
used in the science of livestock breeding. The prediction of a breeding experiment is based
on the response to selection (RS) equation. This equation relates the change in a popula-
tion’s fitness to the standard deviation of its fitness, as well as to the parameters selection
intensity and realized heritability. In this paper the exact RS equation is derived for propor-
tionate selection given an infinite population in linkage equilibrium. In linkage equilibrium the
genotype frequencies are the product of the univariate marginal frequencies. The equation
contains Fisher’s fundamental theorem of natural selection as an approximation. The theorem
shows that the response is approximately equal to the quotient of a quantity called additive ge-
netic variance, V4, and the average fitness. We compare Mendelian two-parent recombination
with gene-pool recombination, which belongs to a special class of genetic algorithms which we
call univariate marginal distribution algorithms (UMD) algorithms. UMD algorithms keep the
genotypes in linkage equilibrium. For UMD algorithms an exact RS equation is proven which
can be used for long term prediction. Empirical and theoretical evidence is provided which in-
dicates that Mendelian two-parent recombination is also mainly exploiting the additive genetic
variance. We compute an exact RS equation for binary tournament selection. It shows that
the two classical methods for estimating realized heritability, the regression heritability and the
heritability in the narrow sense may give poor estimates. Furthermore realized heritability for
binary tournament selection can be very different from that of proportionate selection. The
paper ends with a short survey about methods which extend standard genetic algorithms and
UMD algorithms by detecting interacting variables in nonlinear fitness functions and using this
information to sample new points.
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1 Introduction

The Breeder Genetic Algorithm (BGA) (Miihlenbein et al., 1994) was designed according
to the methods and theories used in the science of livestock breeding. Before we could
implement BGA, we first had to find and understand the most important concepts in the
science of breeding. Then we had to transfer these concepts to the domain of breeding
artificial populations on a computer. The first step was more difficult than expected. The
main reason was that variation in most traits of animals and plants is almost continuous,
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and the classical laws of Mendel do not deal with this case.

The methods for analyzing measurements on continuously varying traits of individ-
uals — and, from these, describing how the traits are inherited and then predicting the
performance of an individual’s relatives — form the discipline of quantitative genetics.
This field deals with populations of individuals and describes the properties of traits in
terms of their means and their degree of variation in the population. From these mea-
surements, parameters such as heritability are derived. The usefulness of this approach
has to be judged by its ability to describe and predict observations. Predictive equations
in quantitative genetics can be of two kinds: (1) microscopic, based on changes of gene
frequency at individual loci — which might then, for example, be summed over the loci
to derive the changes in the trait — and (2) macroscopic, based on the measurement of
traits in a population. The latter is the approach of the biometricians, who, for example,
might perform a regression of progeny fitness on parent fitness under the assumption that
traits are normally distributed in both populations.

Selection poses a major problem in quantitative genetics. The biometric approach
assumes that heritability remains constant, but since selection alters gene frequencies,
it also alters heritability, and the assumption becomes invalid. In breeding practice,
however, heritability usually does in fact remain constant for a number of generations.

Quantitative genetics has had a major influence on modern statistics. We mention
only two important contributions. Linear regression was invented by Galton in 1885
as a means of characterizing the inheritance of a trait. The analysis of variance and
covariance was invented by Fisher in 1918 to compute the correlation between relatives,
using a genetic chance model where large numbers of genes influence a single quantitative
trait.

In this paper we investigate how to predict the evolution of an artificial genetic
population such as is used by BGA by the classical techniques of livestock breeding.
For the analysis we assume an infinite population. Offspring are created by mating and
recombination of genes. Mutation is neglected.

The outline of the paper is as follows. First, we define and discuss the basic concepts
of the science of breeding: response to selection, selection intensity, and heritability.
These concepts are used to formulate the classical response to selection (RS) equation.
Because of its importance for breeding it is also called the breeders’ equation. In the
remaining part of the paper we mainly investigate under which conditions this equation
is a good approximation for the response. First we discuss selection intensity in depth,
showing that it is fairly independent of the fitness distribution. Then we investigate
the response for two loci. It turns out that the mathematical analysis of Mendelian
two-parent genetic recombination (TPR) is difficult, even for two loci. Selection leads
the population away from linkage equilibrium, but the difference equations that describe
gene-frequency evolution seem impossible to solve unless the population is assumed to re-
main in linkage equilibrium. In linkage equilibrium genotype frequencies are the product
of the univariate marginal frequencies.

We then analyze the problem of linkage disequilibrium. We numerically investigate
a theorem of Geiringer (1944). It states that if recombination is applied in a large
population without selection, the population will move towards linkage equilibrium. In
Section 6 we prove an exact expression for the response to selection. If the genotype
frequencies are in linkage equilibrium, the response mainly depends on a value called the
population’s additive genetic variance.

We then investigate algorithms that keep the gene frequencies in linkage equilibrium.



We call these algorithms univariate marginal distribution (UMD) algorithms. For UMD
algorithms we derive an exact equation for the response which uses univariate marginal
frequencies only. We compare in detail TPR and UMD algorithms for two and three loci.
Binary tournament selection for UMD algorithms is discussed in Sections 12 and 13.

The question remains open whether the results for UMD algorithms can be extended
to two-parent recombination as it is used in standard genetic algorithms. A mathematical
solution of this problem could be based on an extension of our Theorem 9. Empirical
evidence for the conjecture that TPR is also mainly exploiting the additive genetic
variance and not discovering and exploiting higher order gene interactions is summarized
in Section 11.

Given the empirical and theoretical evidence that genetic algorithms with TPR have
the same limitations as UMD algorithms concerning the optimization of fitness functions
with interacting genes, we decided to stop our efforts to compute the exact response
for TPR algorithms. It is easier to extend UMD algorithms because there are known
statistical techniques which detect gene interactions. Some of these techniques are briefly
described in Section 15.

If not otherwise noted, we assume discrete genes, an infinite population and the
recombination operator produces one child from two mating parents.

2 Response to selection, heritability and regression

The Breeder Genetic Algorithm (BGA) is based on the classical science of livestock
breeding as it was formulated by Falconer (1981) in the 60‘s. In this section we will
describe the major concepts and give also some historical remarks about the researchers
who made major contributions.

Let f(t) be the average fitness of the population at generation ¢. The response to
selection is defined as:

R(t) = f(t+1) = fQ1). (1)

The amount of selection is measured by the selection differential, S(¢)

S(t) = fo(t) = f(1), (2)

where f,(t) is the average fitness of the selected parents. The equation for the response
to selection relates R and S:

R(t) = b(1) - 5(1), (3)

where b(t) is called the realized heritability. The concept of realized heritability was first
introduced by Falconer (1981). The importance of the above equation for quantitative
genetics has been recently emphasized by Lynch and Walsh (1997). They just call it the
Breeders® equation.

While the selection differential S is a convenient and simple measure of selection, it
does not really tell much about the strength of selection. Therefore breeders introduced
the normalized selection differential, the selection intensity I. 1t is defined as:

(1) === (4)



where o(t) = 1/V () denotes the standard deviation and V() the variance of the fitness
values.

The concept of selection intensity was introduced much earlier by Haldane (1932)
to investigate the influence of selection. For large livestock populations breeders mainly
use mass or truncation selection. Here the |7 - N| best individuals are selected from
a population of size N, 0 < 7 < 1. If the fitness f(¢) has a normal distribution,
the selection intensity I, for a given 7 can be computed fairly easily (Falconer, 1981).
Haldane observed that a high competition, i.e., a very small value of 7, does not lead
to a correspondingly large increase of the response. The relation between 7 and the
response is highly nonlinear. In contrast, the response depends linearly on the intensity
of selection. The nonlinearity is hidden in the relation between I, and 7 (see the curves
in Falconer (1981)). The selection intensity is independent of ¢, it depends on the fitness
distribution. This problem will be investigated in the next section.

Using the selection intensity one obtains the equation

R(t)=1-b(1)- o(t). (5)

The response depends on the selection intensity, the realized heritability, and the stan-
dard deviation of the fitness distribution. In order to use the above equation for predic-
tion, one has to estimate I, b(¢) and o(t). The estimation of b(¢) and o(t) is difficult. In
this paper we will concentrate on the estimation of b(t).

Falconer (1981) showed that realized heritability can be estimated by the regression
coefficient from offspring to mid-parent. The regression coefficient is given by (Rao,

1973)
cov(Fr,(1), Fot))

var(Fry (1)) ©)

F, is a variable that represents the fitness of an offspring, £}, is the mean fitness of its
two parents, also called mid-parent fitness . The variance of the mid-parent fitness is
half the variance of the parent fitness, var(F,,,(t)) = V(t)/2. The regression coefficient
is determined for the whole population, not using selection according to fitness.

If the regression coefficient of selected parents and offspring is identical to the regres-
sion coefficient which is obtained without selection, then it can be used as an estimate
of realized heritability (Miihlenbein et al., 1994)

br,F, (1) =

b(t) = COU(F%Z?)FOG))‘ (7)

The above assumption turns out to be very strong. For complicated fitness functions it
is not satisfied.

Historically, the regression coefficient was introduced much earlier than realized her-
itability. It was invented at the end of the last century by Galton and Pearson. The
regression coefficient is the foundation of the purely macroscopic approach developed by
a school that later came to be called the biometricians. After the rediscovery of Mendel’s
law a new school arose, the Mendelians. The most famous biometrician Pearson “proved”
(Pearson, 1904) that Mendel’s laws or any modification of them are useless for predicting
the regression coefficient, used very successfully by the biometric approach. This posed
a major problem for the Mendelians. The battle between these two schools continued
for more than 25 years.



Judged from todays perspective, Fisher in 1918 derived for certain fitness functions
the biometric regression coefficient as well as the correlation coefficient between relatives
from a genetic chance model which can be considered as an extension of Mendel’s model
to the case of many genes influencing a single trait. Fisher’s paper is considered to be
the most important one in quantitative genetics. It has lead in statistics to the analysis
of variance. In order to understand the result of Fisher’s paper, some definitions are
necessary.

Let @ = (21,...,2,), @; € {0,1,..., L} be a genotype, let f(x) be the fitness and
p(@,t) be the frequency at generation t. Then the univariate marginal frequencies are

given by

pi(zit) = > p(,1), (8)
where the sum is taken over all & with z; held fixed.
Definition: The genotype frequencies are in Robbins’ proportions (Robbins, 1918) if

pla.t) = [ pte ) )

Robbins’ proportions simply state that the z; are statistically independent. This is also
called linkage equilibrium in population genetics.

The following theorem has been proven by Fisher (1918) under strong assumptions.
A concise proof can be found in Asoh and Miihlenbein (1994a).

Theorem 1 Let the gene frequencies be in Robbins’ proportions. Then the variance of
the population can be decomposed at generation t into

V(1) = Vi(l) + Va(t) + - + Va(1). (10)

The covariance can be decomposed into

1 1 1
con(Fopl1). EL(1) = S0 + 2Va(0) 4 -+ V40 (1)
Vi(t) is called the additive genetic variance V4(t). For gene frequencies in Robbins’
proportions a closed expression for V4 can be found

n L

Va(t) = 305 pilv. t) (Fi(v, 1))

=1 v=0

It will be derived in Section 7. For a precise definition of the interaction vartances
V; see Asoh and Miihlenbein (1994a).

Va(t) will be of critical importance for our analysis. It depends on the univariate
marginal frequencies, making an interpretation difficult. Fisher later applied his method
to general statistical problems. It lead to the development of the analysis of variance
(ANOVA) and covariance. In statistical problems there is no evolving population, instead
the concept of a representative sample set is used. Therefore it is implicitly assumed that
the p; are constant. This assumption has been also made by Reeves & Wright (1995)
who reintroduced ANOVA into the theoretical analysis of genetic algorithms. They used
ANOVA to compute the epistasis of some fitness functions. But for a genetic population
the ANOVA decomposition can be used only for the initial population which is generated



randomly. Later p; will change according to the dynamics of the genetic population. This
might change the decomposition dramatically.
From the above theorem using Equation 7 we obtain the estimate:

Corollary: Under the assumptions of Theorem 1 the regression coefficient can be esti-

mated by
PVa(t) + 1Va(t) + - 3 Va (1)
0P, P (1) = () '
2

Both the definition and the computation of the interaction variances is difficult.
Therefore Fisher’s paper was of theoretical value only. It shows that the connection
between a genetic microscopic model and macroscopic regression is very complex.

In 1930 Fisher made another important contribution, which he called the fundamental
theorem of natural selection (FTNS) (Fisher, 1958). Fisher claimed for proportionate
selection that

Va(t)

B0 Ty

where Vy is the additive genetic variance introduced before. It is easy to show that for
proportionate selection we have (Miihlenbein et al., 1994)

(12)

(13)

S(t) = %

Therefore Fisher’s theorem can be written as

This suggests another estimate of realized heritability. It is called the heritability in the
narrow sense denoted as h* (Falconer, 1981):

b(t) ~ B2 (1) = VVA(%). (14)

Now we arrived at the following problem. From Fisher’s FTNS follows that, if V4 = 0,
the realized heritability is zero. But the regression coefficient is as large as 0.5 for V4 = 0
and V2 = V. Which estimate is better? This problem will be investigated in Section 8.
Breeders use heritability in the narrow sense as the estimate of realized heritability
(Falconer, 1981). This is justified because under the assumptions of Theorem 1 the
relation

h*(t) < br,F,, (1) (15)

holds. Inserting h? into Equation 5 gives the famous response to selection equation used

by breeders (Falconer, 1981)
R(t) ~ - R2(1) - VV2(1) = 1 h(1)V, (1), (16)

The response to selection is approximately equal to the product of selection intensity,
heritability in the narrow sense, and the square root of the additive genetic variance.



In genetic algorithms, but also in breeding of livestock the goal is not to optimize the
response for one generation, but the cumulative response for T' generations. This is given

by
T

RY =31 h(t) - Vi™(1), (17)
t=1

This is a very short description of the major concepts and results in classical quantitative
genetics. The different definitions of heritability are at first confusing. Some of the results
mentioned have been only vaguely derived for diploid organisms. In their forthcoming
book Lynch and Walsh (1997) derive conditions under which the breeders’ equation can
be applied. Furthermore they discuss when this equation should not be used from the
viewpoint of quantitative genetics.

We believe that researchers in genetic algorithms should be familiar with the basic
concepts of quantitative genetics. We have already mentioned the analysis of variance. A
second example is the correlation between parents and offspring. It was defined by Galton
and Pearson. In 1991 Manderick et al. proposed the correlation between parent and
offspring as a measure for comparing genetic operators. But the correlation coefficient
and the regression coefficient by, are closely related (see Miihlenbein et al., 1994).
The RS equation makes it clear that the correlation measure alone is not sufficient to
define a good genetic operator. Instead the product of correlation and the variance of
the fitness of the offspring has to be taken. This is a mathematical formulation of the
exploitation vs. exploration problem. A high correlation means that offspring are very
similar to parents (exploitation), a high variance means that offspring might be very
different from parents.

In the next Section we investigate the concept of selection intensity in more detail.

3 Selection intensity

In order to compute selection intensity, we will use the notation and the results of
order statistics. (For a recent introduction into order statistics, see Arnold et al., 1992.)
Order statistics has already been used by Béack (1995) to compute the selection intensity
of truncation selection and tournament selection, but Back only investigated normal
distributions. A detailed investigation of selection intensity for different selection schemes
has been done by Blickle & Thiele (1997). They also assume a normal distribution. In
this section we will compute the selection intensity for some well-known discrete and
continuous distributions.

Let Xi., < Xy < --- < X, denote the order statistics of a random sample of
size s (i.e., X, is the ¢th smallest member of the sample set). The sample is drawn
from a continuous distribution with probability density function (PDF) d(x), cumulative
distribution function (CDF) D(z), mean g, and variance o?. We first will compute
the selection intensity I, for tournament selection, then for truncation selection. In
tournament selection, only the largest value, X, is taken. Therefore we have to compute

[ = el 71 (18)

The expected value of the largest element is given by
+oo
B(X,,) = / edys(2)de, (19)

— 00
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where d,.; is the PDF of X,.,, which for continuous distributions was shown by Arnold
et al. (1992) to be:
dos(x) = sD(z)* d(x). (20)

For a given continuous distribution one can use these equations to compute the selection
intensity [;. In Table 1 we give results for the following PDF’s: the normal distribution
N(0,1), the uniform distribution U(0, 1), the exponential distribution EXP, and several
discrete binomial distributions, B(n,p). In the case of the binomial distributions, we

have (Arnold et al., 1992)

n—1

E(Xos) = (1= D)), (21)

i=0

For tournament sizes of ten or less (i.e., s < 10), the selection intensity is very similar
for all distributions considered, despite the wide range of values for F(Xj.;). This means
that the values obtained using a normal distribution can be used as an approximation.
The binomial distribution arises if the fitness function is the discrete ONEMAX function
of size n (Miihlenbein et al., 1994). The selection intensity for this discrete distribution
is surprisingly similar to those for the continuous distributions.

s | EJI, [ N(0,1) ] B(15,0.5) | B(10,0.5) | B(15,0.1) | B(10,0.1) | U(0,1) | EXP
2 [ E(X) | 0.5641 8.5832 5.8809 0.6666 1.5
I, | 0.5641 0.5593 0.5571 0.5773 0.5

5| E(X) | 1.1629 9.7298 6.8114 2.9116 2.1550 | 0.8333 | 2.2833
I, | 1.1629 1.1514 1.1456 1.2149 1.2174 | 1.1547 | 1.2833

10 | E(X)| 1.5387 | 10.4383 7.3817 3.4430 2.6089 | 0.9090 | 2.9289
I, | 1.5387 1.5173 1.5063 1.6765 1.6959 | 1.4171 | 1.9289

~ | E(X) %0 15 10 15 10 1.0 %0
I, 0 3.8729 3.1622 | 11.6189 9.4868 | 1.7321 0

Table 1: E(X;.) and selection intensity /5 for tournament selection of size s

For discrete distributions with a small number of states, the selection intensity may
be very different from that obtained by assuming a normal distribution. This is shown
in the next theorem.

Theorem 2 For the binomial distribution B(2,p) we have
B(Xz2) —p = 2p(1 —p)(1 —p+p’) (22)
L(2,p) = 2p(1 =p)(1 —p+p°). (23)
For the binomial distribution B(3,p) we obtain
E(Xyn)—p = 3p(1 —p)(1 —2p+4p* — 4p® + 2p*) (24)
L(3.p) = /3p(L —p)(1—2p+4p* — 4p” + 2p"). (25)

Proof: We prove the theorem for B(2,p). Obviously p = 2p. With D(0) = (1 —p)? and
D(1) = 1— p* we obtain from Equation 21 the term F(X,.5) — . The selection intensity

is obtained by dividing this expression by o = 1/2p(1 — p). The proof for B(3,p) is



similar.
O

For the binomial distribution the selection intensity depends on the parameters n and
p. But even for n = 3 the value obtained from the normal distribution is approximately
valid in the range 0.2 < p < 0.8, as can be seen in Figure 1. We obtain [5(3,0.5) = 0.536,
whereas the normal distribution gives Iy = 0.56 (see Table 1).

0.6

Figure 1: Selection intensity I for B(3,p).

The computation of the selection intensity is more difficult for truncation selection.
With truncation selection the k best values are selected where k depends on the trun-
cation value 7. If p is the average of the population, the selection intensity is defined
as

1 N
T 2ai=N—kt1 Xin —p
g

I(k,N) = : (26)

where N now denotes the sample size instead of s in order to be consistent with the
notion of population size. The cumulative distribution function CDF of I(k, N) does
not have a closed form; however, its mean and variance can be computed from the
means, variances, and covariances of the order statistics. Extensive tables are available
for the normal distribution (Falconer, 1981). Truncation selection has been widely used
in evolution strategies. For normally distributed variates we have I(k, N) = ¢3/x v, where
cr/kv is called the progress coeflicient in evolution strategies (Béck (1995)).

A closed solution of the expected value of I(k, N) can be obtained if the sample is
from an exponential distribution (Nagaraja, 1982):

N
E(I(k,N)= > i (27)
i=k+1
It N is large then this can be approximated as:
N
E(I(k,N)) ~ ln(?) (28)

For arbitrary distributions, even if the sample values are dependent, it can be shown



that (Nagaraja, 1982)
Bk N) <k (29)

For sufficiently large N, and for k = [7N], this gives the bound

1 —7

E(I(k,N)) < (30)

T

In the following table we compare the selection intensity of exponentially distributed
with normally distributed fitness values.

Dist. 7] N=4 | N=8 [N=16 [ N=32 [ N = x || (30)
EXP || 0.5 0.583 | 0.635 | 0.663 | 0.678 | 0.693 || 1.0
N(0,1) 0.663 | 0.725 | 0.760 | 0.785 | 0.798 || 1.0
EXP || 0.25 1218 | 1.297 | 1.341 | 1.387 || 1.73
N(0,1) 1.138 | 1.201 | 1.25| 1.271 | 1.73
EXP [[ 0.125 1.881 | 1.975 | 2.079 || 2.65
N(0,1) 1.525 | 1.62| 1.645 | 2.65

Table 2: Selection intensity for exponential and normal fitness distributions. The far-
right column is computed from Equation 30.

One can see from Table 2 that the difference between the selection intensities for
normal and exponential distributions is roughly 20%. For 7 = 0.5 the selection intensity
for the normal distribution is higher. This is reversed with more severe selection (7 <
0.25).

The upper bound (Equation 30) is between 20% and 60% higher than the intensi-
ties obtained from the distributions. Since we are only attempting to approximate the
RS equation, it seems reasonable to use the selection intensity derived for the normal
distribution as a first approximation of 1.

For an accurate prediction the specific distribution has to be taken into account. This
was done by Voigt and Miihlenbein (1995), who showed that for continuous unimodal
fitness functions, the fitness distribution is better approximated by a gamma distribution
than by a normal distribution.

We now turn to the investigation of realized heritability, beginning with an investi-
gation of two-parent genetic recombination as it is normally used in genetic algorithms.

4 Analysis of two-parent recombination for two loci

The difficulty in analyzing two-parent genetic recombination (TPR) will be shown by
way of a simple example using proportionate selection and two loci. In this case there
are four possible genotypes @: (0,0),(0,1),(1,0), and (1,1). We denote their fitness
values f(@). Let p(@,t) be the frequency of genotype @ at generation t. For simplicity
we restrict the analysis to uniform crossover (Syswerda, 1989), an example of two-parent
recombination.

10



Theorem 3 For proportionate selection and uniform crossover the gene frequencies obey
the following difference equation
[(=z) @41 L Ds(t)
ple,t+1)===ple,t)+ (-1 —— . 31
1) = L e (1 e (31)
|@|? denotes the number of ones in @. f(t) = Sg p(,t)f(x) is the average fitness
of the population; and Ds(t) is defined as

Dy(t) = £(0,0)f(1,1)p(0,0,)p(1,1,¢) — f(0,1)f(1,0)p(1,0,1)p(0,1,) (32)

Proof: For proportionate selection the gene frequencies p® (@, ) after selection are given

by
f(=z)
(x,t) = =—=p(x,t).
(ent) = Lolpen
Now we pair randomly between the selected parents and count how often genotype
arises after uniform crossover. Taking & = (0,0) as an example, and computing the

—_

[N
~

probabilities of mating, we obtain
1
p(0,0,6+1) = p*(0,0,1) (pS(O,O,t) FP0, 10+ P (L0,1) + 5P (1, 1,t))

For (0,10 (1,0,1)
Using the fact that p®(0,0,¢)+p*(0,1,¢)+p*(1,0,)+p°(1,1,¢) = 1 we obtain the theorem
for & = (0,0). The remaining equations are obtained in the same manner.
O

Equations 31 are formally identical to those known for diploid organisms in popu-
lation genetics (Crow & Kimura , 1970), despite the fact that the underlying genetic
recombination is different. Uniform crossover can thus be thought of as Mendelian re-
combination for haploid organisms. Obviously, the same equations are obtained for single
point crossover with crossover probability of 0.5. The difference equations have not yet
been analytically solved (Nagylaki, 1992).

For the univariate marginal distributions p(1,%) = p(1,0,¢) +p(1,1,%) and po(1,t) =
p(0,1,%) + p(1,1,t) we obtain

f(1,0)p(1,0, t):l' (L, )p(1,1,1)
f(t)

f(0,1)p(0, 1, t):|‘ (L, )p(1,1,1)
f(t) '

Here the term D, has vanished. If the genotypes are in Robbins’ proportions then we

get

pl(lvt + 1) =

(33)

pz(l,t + 1) =

(34)

J(L0)(A = po(1, 1) + f(1, Dpa (1, 1)

pl(lvt—l_l) = pl(lvt) (35)

p2(17t+1) = p2(17t) (36)

We will derive the equations for an arbitrary number of loci n in Section 6. For two
loci we can compute an exact expression for realized heritability.

11



Theorem 4 The realized heritability b(t) for uniform crossover is given by

1 Dy(t)

b0y = 1= 570.0) = J(0.1) = J(1,0) + J(1,1) 7

Proof: By summation we obtain

R(t) = f(t+1)—f()

_ v 1 _ _ D (1)
(1 B B D)
(1= 20,0 = 0.1 - 71,0+ 11, 1) Mm)) s()
— (1)5(0).

Here we used the equation S(t) = V(¢)/f(t) (Miihlenbein et al. 1994).
O

We will return to these equations in Section 8. Note that D,(t) = 0 if
p(0,0,t)p(1,1,t) = p(0,1,¢)p(1,0,¢) and f(0,0)f(1,1) = f(0,1)f(1,0). The first con-
dition is the mathematical definition of linkage equilibrium in population genetics. We
will soon show that linkage equilibrium is identical to the genotypes being in Robbins’
proportions.

Realized heritability is 1 for the additive case f(0,0) + f(1,1) = f(0,1) + f(1,0).
Realized heritability is also 1 for the multiplicative case f(0,0)f(1,1) = f(0,1)f(1,0) if
the initial population is in linkage equilibrium. But in general, uniform crossover after
selection leads to difficult systems of difference equations; the genetic population moves
away from linkage equilibrium.

The assumption of linkage equilibrium is not as severe as one might think. The
next theorem shows that without selection, the gene frequencies of a population mating
randomly will converge to linkage equilibrium. This means that linkage equilibrium can
be considered to be the limit distribution of any genetic recombination scheme applied
without selection.

Theorem 5 Let D(t) = p(0,0,¢)p(1,1,t) — p(0,1,)p(1,0,%). If there is no selection
then

D(t) = (_1)|x|2(p(wat) — pi(1,0)p2(22,0)). (38)
Furthermore the factor D(t) is halved each generation
1
D(t+1) = §D(t). (39)

Proof: Without selection the univariate marginal frequencies are independent of t,
because for an infinite population a recombination operator based on the Mendelian
chance model does not change them. Then from

p(l, 17t> —pl(l,())pg(l,()) = p(l, 17t> - (p(l,(),t) +p(17 1,t))(p(0, 17t> +p(17 lvt))
= p(l, 17t> —p(O, 1,t)p(1,0,t) —p(l, 17t)(1 —p(0,0,t))

we obtain

D(t) = p(1,1,¢) — p:(1,0)p(1,0).

12



This gives Equation 38 for & = (1,1). The other cases are proven in the same way.
Without selection we have from Equation 31

2441
ple,t+1) = ple. ) + (~D)*F D). (40)
By computing D(t+1) Equation 39 is obtained.
O
We will use as a measure for the deviation from Robbins’ proportions the mean square

error DSQ(1)
DSQ(t) =" (p(z,t) — pr(21)pa(a2))” . (41)

€

From the above Theorem we obtain

Corollary: For two loci we have
1
DSQ(t+1) = ZDSQ(t)
The genotype frequencies p(@,t) converge to Robbins’ proportions for t — oo.

The limit distribution for an arbitrary number of loci will be investigated in the next
section.

5 Recombination without selection

The problem of determining the limit distribution was solved by Geiringer (1944). She
considered diploid organisms, where the genes may be linked (in modern genetics terms,
the genes may be on the same chromosome). The classical Mendel’s laws are valid for
genes of different chromosomes — unlinked genes — only.

Theorem 6 (Geiringer) The limit distribution is the product of the n univariate
marginal distributions p;(x;), which are derived from p(@,0), the distribution of gametes
in the initial population.

Note that the limit distribution is independent of the specific recombination method
used. The special case, assuming no linkage between genes, was already solved by Tietze
(1923) in a very interesting, but rather involved paper. The proof by Geiringer is simpler
and shorter, but still very sophisticated.

A rather informal proof of Geiringer’s theorem for haploid organism was done by
Holland (1992). We will concentrate on the speed of convergence to Robbins’ proportions
by numerical simulations. For more than 2 loci, the equations for uniform crossover and
one-point crossover are different. Uniform crossover should convergence faster, because
it mixes the genes much more than one-point crossover. Table 3 gives numerical results
for n = 8 loci.

It is very difficult to obtain empirical laws from our simulations because of the
stochastic fluctuations in a finite population. This is demonstrated by Table 4. There
the numerical value for DSQ(t) is shown for different population sizes. In addition

c=DSQ+1)/DSQ(t) is displayed. From Theorem 5 a factor of ¢ = 0.25 is expected.

13



9 7 q2 qgo—1/2" | @ —1/2" | q—1/2"
0.5 0.0 0.0 0.4961 -3.906E-3 -3.906E-3
0.3774 | 0.0177 | 0.0 0.3735 1.369E-2 -3.906E-3

0.2879 | 0.0262 | 0.0012 0.2840 2.229E-2 | -2.706E-3
0.2225 | 0.0303 | 0.0028 0.2186 2.639E-2 | -1.106E-3
0.1768 | 0.0314 | 0.0042 0.1729 2.749E-2 | 4+0.294E-3
0.1421 | 0.0298 | 0.0050 0.1382 2.589E-2 | 4+1.094E-3
0.5 0.0 0.0 0.4961 | -3.906E-3 | -3.906E-3
0.2533 | 0.0020 | 0.0023 0.2494 | -1.927E-3 | -1.646E-3
0.0895 | 0.0097 | 0.0101 0.0856 | +5.834E-3 | +6.174E-3
0.0323 | 0.0093 | 0.0102 0.0283 | +5.434E-3 | +6.244E-3
0.0148 | 0.0074 | 0.0072 0.0108 | +3.574E-3 | +3.254E-3
0.0090 | 0.0057 | 0.0056 0.0051 | -1.794E-3 | +1.794E-3

CU R W N P OO W~ O

Table 3: Comparison of convergence to Robbins’ proportions for n = 8 loci, onepoint
(upper half) and uniform crossover, go = p(0,...,0), ¢ = p(0,...,1), g2 = p(0,...,1,0),
population size N = 1000, averages over 100 runs.

N = 1000 N = 10000 N = 20000
DSQ c DSQ c DSQ c
9.00k-2 9.00E-2 9.00E-2

2.28E-2 | 0.25 | 2.25E-2 | 0.25 | 2.25E-3 | 0.25
6.37E-3 | 0.28 | 5.77E-3 | 0.25 | 5.59E-3 | 0.25
2.34E-3 | 0.37 | 1.55E-3 | 0.27 | 1.45E-3 | 0.26
1.62E-3 | 0.70 | 4.96F-4 | 0.32 | 4.24FE-4 | 0.29
1.91E-3 | 1.03 | 2.43E-4 | 049 | 1.67E-4 | 0.39
2.62E-3 | 1.13 | 2.25E-4 | 1.10 | 1.41E-4 | 1.10

OO T k= W N — Of e

Table 4: Convergence to linkage equilibrium for n=2 loci

The numerical simulations show that finite populations behave as expected for a short
time only. For a population of N = 1000 the minimum deviation DS, from Robbins’
proportions is already achieved after four generations, then DS slowly increases due
to stochastic fluctuations by genetic drift. Ultimately the population will consist of one
genotype only. Genetic drift has been analyzed by Asoh & Miihlenbein (1994b). It will
not be considered here.

Table 5 shows the value of ¢ for larger values of n. We see that the reduction factor ¢
decreases for increasing n in generations 2 and 3. We will derive this result analytically.
The analysis is valid for N < 2" and n > 8. Let ¢; denote the frequency of genotype x,
where ¢ is the integer representation of the binary string .

Theorem 7 The minimal deviation DSQ i from Robbins® proportions is given for
N < 2" and n > 8 by

1 —n
DSQuin = 7 — 2 (42)

14



n

4 8 12 16
0.25 | 0.25 | 0.25 | 0.25
0.23 ] 0.13 | 0.08 | 0.07
0.25| 0.15 | 0.07 | 0.03
0.26 | 0.24 | 0.25 | 0.24
0.31 ] 0.38 | 0.65 | 0.84
0.49 | 0.63 | 0.89 | 0.95

Oy U= W N | =~

Table 5: Reduction factor ¢ averaged over 100 runs, N = 10000, uniform crossover

Proof: For N < 2" we have at equilibrium about N different genotypes. 2" — N
genotypes are not represented in the population. Therefore

1
DSQpin = N(W—Q—”)?Jr(zn—N)(o—z—”)2
_
N

O
Next we explain why ¢ is decreasing for generation 2 with increasing n.

Lemma: For N < 2" and starting with qo = qan_1 = 0.5 we have at generation 1

1
Go = 1
G ~ 0 0O<e<2"—1
1
Qa1 = 1
This gives DSQ(1) = 3 and ¢(1) = 1. In generation 2 we have for n > 16
N 1
o =~ 16
N 1
Gon—1 = 16
This gives approzimately DSQ(2) = 135 and ¢(2) = .

Proof: We compute the probability that in generation 1 genotype ¢o is obtained. The
genotype appears as a result of mating between ¢y and ¢y and ¢o with gan_q1. This gives
the probability

11 1 1
=_—*x—-+2-27"~ —
©=3ratE 1
The same probability is obtained for gon_;. Furthermore,

1
qi:ZZQ‘”:Q‘”‘lwo 0<e<2" —1.

A similar computation can be done for the second generation. We obtain for n > 16
approximately ¢o = qan_q ~ =

16"
O
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Remark: For the limit n — oo, N < 2", we conjecture using the same arguments as
in the above proof DSQ(1) = 272 DSQ(2) = 277, DSQ(3) = 2713, DSQ(4) = 27%
etc. This shows how fast uniform crossover is moving into the direction of Robbins’
proportions.

We now summarize the results of the simulation and the theoretical analysis. A
finite population normally will not exactly reach Robbins’ proportions. It will remain at
a minimal distance of DSQ,.;,. The number of steps to reach DSQ),.;n depends mainly
on N. It is for N < 2" almost independent of n. In all simulations with n > 4 the
deviation from Robbins’ proportions was less than 1% after 7 generations. This strongly
supports to analyze genetic algorithms by assuming Robbins’ proportions.

The work of Geiringer was recently rediscovered by Booker (1993). He wrote:
“Geiringer’s convergence results suggest that the most important difference among re-
combination operators is the rate at which they converge to equilibrium in the absence
of selection.” We will later show that it is difficult to extrapolate recombination re-
sults without selection to results with selection. The really astonishing result is that
without selection all reasonable two-parent recombination methods converge to the same
equilibrium - given by Robbins™ proportions. This means that any given distribution of
2" genotype frequencies will converge to a distribution defined by n variables only - the
univariate marginal distributions.

Therfore we conclude that the theorem supports concentrating the theoretical anal-
ysis to gene frequencies being in Robbins’ proportions. Given our numerical results
we conjecture that all two-parent recombination operators create genotype frequencies
which are fluctuations around the trajectory given by Robbin’s proportions.

We show in the next section that all two-parent recombination operators give the
same univariate gene frequencies, even after one step of selection.

6 Difference equations for univariate marginal fre-
quencies

The difference equations for genotype frequencies soon get complicated if the number of
loci increases. They can only be obtained by a computer program. A nice calculus for
computing these equations has been developed by Vose and Wright (1994), though these
equations are too detailed for our purposes. They describe the evolution of all possible
genotypes, which means that for n = 15 there are 32768 independent variables!

The following theorem gives the difference equations for the univariate marginal fre-
quencies.

Theorem 8 For proportionate selection the univariate marginal frequencies are deter-
mined by

plost+ )= 3 HED/@) (43)

&L|zi=v f(t)

This equation is valid for any recombination/crossover scheme based on the Mendelian
chance model.
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Proof: After selection the univariate marginal frequencies are given by

pi(v,t) = Zpa:t Z}M

&L|zi=v &L|zi=v f(t)

Now the selected individuals are randomly paired. Since Mendelian recombination does
not change the allele frequencies, these operators do not change the univariate marginal
frequencies. Therefore
pilv,t 4 1) = pi(o,1).

O

This result is very important. For n = 2 we have already proven it with Equation
33. A number of conclusions can be derived.

Let H;(v) = (*,...,%,0,%,...,%) be a first-order schema at locus ¢. This schema
includes all strings where the gene at locus i is fixed at v. Then the fitness of the schema
at generation t is given by (Holland, 1992):

Z p(@,t)f (44)

Hi v),
[(Hi(v), 1) pz( ] i

Our univariate marginal frequency p;(v,t) is obviously identical to the frequency of
schema H;. From Theorem 8 we obtain:

Corollary (First-order schema theorem): For a genetic algorithm with proportion-
ate selection using any Mendelian recombination the frequency of first-order schemata

F(H (), 1)
f(t).
Note that the above corollary is valid for an infinite population with proportionate
selection and recombination. Holland’s famous schema theorem (1992) implies for first

order schemata (schema defining length of 0)

changes according to

pi(vvt—l_l) :pi(vvt) (45)

pi(v,t+1) > pi(v,t)

Theorems using univariate marginal distributions are of limited use for prediction.
They can only make single-step predictions. The computation of f(H;,t) and f(¢) needed
for Equation 45 requires all genotype frequencies p(«,t). The next corollary directly fol-
lows from Theorem 8.

Corollary: If p*(x) is a fived point of a genetic algorithm with proportionate selection,
then

f=f(H;v) i=1,...,n (46)
A necessary condition for a fived point is that the fitness of all first order schemata is
equal to the average fitness.

The above condition is necessary, but not sufficient for a fixed point. The following
example shows this. Let the fitness function be defined as f(0,0) = f(1,1) =0, f(1,0) =
f(0,1) = 1. Then for identical genotype frequencies p(«) = 1/4 the condition is fulfilled,

but p(@) is not a fixed point for uniform crossover.
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It the genotype frequencies are in Robbins’ proportions, an expression using only
univariate marginal distributions can be given. The corollary immediately follows from

Theorem 8.

Corollary: Let the genotype frequencies be in Robbins™ proportions. Then for any
genetic algorithm with proportionate selection the univariate marginal frequencies obey
the difference equation

ot +1) = o) 250, (47)

where

Z flz Hp] (zj,1) (48)
&L|zi=v #

The difference equation (47) can also be written in the form

pi(v,t+ 1) = pilv, 1)+ pi(v, t)F]f( )t), (49)

where B B

Fi(vvt):fi(vvt)_f(t)' (50)
The expression F;(v,t) was introduced by Asoh and Miihlenbein (1994a), but was de-
noted fiy(v,1). These values minimize

prt( S (G <xi,t>)2,

for varying g;(x;,1). S, Fi(wx;,1) is the best additive approximation to f(a)— f(¢). The
expressions are used to define the additive genetic variance V4(t), which was introduced
briefly in Section 2.

ZZpZ v, 1) (Fi(v t)) (51)

=1 v=0

Note that in general a genetic algorithm is not fully described by the n univariate
marginal distributions. Even if the genotype frequencies are in Robbins’ proportions,
they will in general be in linkage disequilibrium after one step of selection.

We are now ready to prove the main theorem, which is related to Fisher’s Funda-
mental Theorem of Natural Selection (Fisher, 1958). It is the exact RS equation for
proportionate selection.

Theorem 9 Let the genotype frequencies be in Robbins’ proportions. Then for any
genetic algorithm with proportionate selection the response to selection is given by

R = Vall

) (@)= 0 - X Bt ()

=1

where Ap(e) = p(e,t + 1) — p(e,1).
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Proof: We have Y g Ap(@)f(x) = R(t) and Y g Ap(x) = 0. Let Ap;(v) = pi(v,t+1) —
pi(v,t). Then

N
-
=
&
N
e
G}
I
hE
M=

Fi(v,1) > Ap(e)

0 &L|zi=v

o
Il
—
o
Il
—
S
Il

Il
N
] =

Fi(v,t)Api(v)

-
Il
—
S
Il
=]

pilv, ) I (v, 1)/ (1)

Il
N
] =

o
Il
—
Il
=}

v

(t
f(t)
Summing up all terms gives the response equation. We used that for Robbins’ propor-

tions Y g|s,=0 Ap(®) = Api(v,t). Furthermore Equation 49 was inserted.
O

=

For a genetic algorithm with two-parent recombination TPR the theorem can be
used for one step only, because the genotype frequencies will not remain in Robbins’
proportions.

Fisher (1958) stated his theorem as follows: “The rate of increase in fitness of any
organisms at any time is equal to ils genetic variance in fitness at that time”, or mathe-
matically R(t) ~ V4(t). Fisher assumed continuous generations, which leads to differen-
tial equations instead of difference equations. For discrete generations the corresponding
expression would be R(t) ~ Va(t)/f(t). This is just the first factor of Equation 52.
The second term is of second order, because it is a summation of a product of the
changes of the genotype frequencies times the error between f(a) and its best additive
approximation. The theorem indicates that Fisher’s theorem is approximately correct.

By neglecting the sum in Equation 52 we obtain:

Corollary: Let the genotype frequencies be in Robbins’ proportions. Then the realized
heritability can be estimated by

b(t) =~ h*(t) = V) (53)

The estimate is valid for any genetic algorithm with proportionate selection.

Proof:
Valt) _ Va@) V() _ Va(?)

O F0 =V o~ Vo
O

It is known in population genetics that Fisher’s theorem is mathematically false.
There are even counterexamples with R(?) < 0. In these counterexamples the population
is not in linkage equilibrium. But the biological interpretation of Fisher’s conjecture is
still open. Can it be that in nature we only find fitness functions where Fisher’s theorem
is valid? Second, how important is linkage disequilibrium in natural populations? For a
recent discussion of Fisher’s theorem in population genetics the interested reader should

consult Ewens (1989, 1992, 1995).
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A different expression for R(t) has been given by Altenberg (1995). Altenberg derived
a general formula for any kind of recombination scheme. But even if linkage equilibrium
is assumed, Altenberg’s formula is very difficult to apply for a given fitness function.

There have been other approaches to obtain a more precise equation for the response.
The most promising approach seems to extend the equation for the response to selection
to a set of equations using higher order moments or cumulants. First steps into this
direction have been made by Priigel-Bennet and Shapiro (1994) and Rattray (1995).
They have been able to compute the cumulants for quadratic fitness functions using con-
cepts of statistical mechanics. In population genetics Bulmer (1980) already introduced
cumulants. His work was extended by Turelli and Barton (1994).

The application of Theorem 9 to a genetic algorithms with two-parent recombination
is limited. Therefore we introduce in the next section an algorithm, that keeps the
population in Robbins’ proportions. This algorithm is completely defined by univariate
marginal frequencies.

7 Univariate marginal distribution algorithm

There is a simple recombination scheme that maintains the population in Robbins’ pro-
portions; we call it gene-pool recombination (GPR) (Mihlenbein & Voigt, 1996). In
GPR, the two alleles to be recombined at each locus are chosen independently from the
gene-pool defined by the selected parent population. The biologically inspired idea of
restricting recombination to the alleles of two-parents for each offspring is abandoned.

Definition: In gene-pool recombination the two “parent” alleles of an offspring are
randomly chosen for each locus with replacement from the gene-pool given by the selected
parents. The offspring allele is then computed using any of the standard recombination
schemes for two-parent recombination.

For binary functions the bit-based simulated crossover (BSC) of Syswerda (1993) is
similar to GPR. However, his implementation merges selection and recombination. An
implementation of BSC that separates selection and recombination was empirically in-
vestigated by Eshelman and Schaffer (1993). GPR is a generalization of BSC; it can
be used for any representation — discrete or continuous. For a discussion of gene-pool
recombination and its analysis, see Miihlenbein and Voigt (1996). Gene-pool recombi-
nation leads to difference equations for the univariate marginal frequencies p;(v). Here
we generalize this idea and define a conceptual algorithm that does not recombine chro-
mosomes but uses univariate marginal frequencies instead.

The general form of the Univariate Marginal Distribution Algorithm (UMDA) is as
follows:

UMDA

o STEP 0: Set t <= 1. Generate N > 0 points randomly.

o STEP 1: Select M < N points according to a selection method. Compute the
marginal frequencies r;(x;,t) of the selected set.

e STEP 2: Generate N new points according to the distribution p(e,t + 1) =
[T, ri(xi,t). Set t <=t +1.
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e STEP 3: If termination criteria are not met, go to STEP 1.

From Equation 49 it follows:
Corollary: For proportionate selection, the UMDA stays in equilibrium iff V4 = 0.

The response to selection is zero if the additive variance is zero. UMDA only exploits
the additive genetic variance.

The corollary implies UMDA is not a global optimization method for highly non-
linear functions characterized by a significant V4 contribution (see Equation 10) and a
small V4 contribution, since evolution stops if V4 = 0. This limitation has already been
shown by simulation for the case of gene-pool recombination by Miihlenbein and Voigt
(1996). For UMD algorithms the response is zero iff the additive genetic variance Vy is
zero.

We have been able to prove a weak form of Fisher’s theorem by using an inequality

from Baum and Eagon (1967).

Theorem 10 For UMDA we have R(t) > 0 unless all univariate marginal frequencies
remain the same.

The Theorem is proven in Appendix 1.

We have not been able to extend Theorem 9 to populations which are in linkage dise-
quilibrium. In the next Section we will in detail compare UMDA with genetic algorithms
using two-parent recombination for the case of just two loci.

8 The exact response equation for two loci

In order to investigate Fisher’s fundamental theorem rigorously, we will compute in this
section exact equations for the response. We assume proportionate selection, linkage
equilibrium and for notational convenience binary genes. The computation for two loci
is already very tedious, indicating that an exact analysis for three loci by this method

would be difficult.

Theorem 11 Let the fitness be given by f(0,0) = fo, f(1,0) = f(0,1) = f1, f(1,1) = fs.

Let the genotype frequencies at generation t be given by p(0,0,¢) = (1 — p)?,p(0,1,t) =

p(1,0,t) = p* (1 — p),p(1,1,t) = p*. Then for uniform crossover the response is given

by

Va(t) + 3Va(t)
f(t)

Proof: From the definitions we get

+p(1=p)(fa=2/i + f0)4}2)2- (54)

R(t) =

Vo= P2l = p) i+ (L=p)fg = f(1)
Va = 2(pFH1t) + (1= p)FA(0,1))

= 2 ((L=p)fi +pf = F) +2(1 = p) (pfi + (1= p)fo — F(1))) "

The computation is straightforward, but tedious. Therefore we show some important
intermediate steps. We start with
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V—Va = pfi+2p(0 —p) i+ (0 —p)?f5—f1)?
=2p(1 = p)* ff = 20°f5 = 4p* (1 = p) fufa + 4p(1 — p) 1 (1) + 4p° [ £ (1)
—=2(1 —p)p* fi =200 = p)° f5 — 2/ (1)°
—4(1 = p)’pfifo+ 41 = p)pfif(t) +4(1 = p)* fof(1).

Collecting all terms with f(¢) we obtain
V=Vi = pfi+2p(L=p)ff + (1 =p)*f5 + F(1)°

—2(1 = p)p* fi —2(0 = p)° f§ — 2p(1 — p)* f}
—2p° 3 —4p*(1 = p) f1 .

Combining all coefficients we obtain the expression
Vo=V = Va=p"(1 = p)*(fo =2 + fo)*. (55)

We now use the expression of R(t) derived in Theorem 4. In the special case considered
here, the term D;(t) is just

D,(t) =p*(1 = p)*(fof2 — [1)-
Therefore

Va(t) + Va(t)  1p*(1 —p)?
() 2 f(1)?

Inserting V5 into this equation gives

R(t) =

(fo—=2f1+ f2)(fof2 — f1)-

VA(t)+%‘/2(t) L, 2Jo—2fi + [
o T

After some computation we obtain

(fo=2fi+ L) ()= folfa+ [ = (pfa+ (1 =2p) f1 — (1 = p) fo)*.

We note that V4 can be written as

R(t) =

(f0_2f1‘|‘f2_m)-

ft)

Va=2p(1 —p)(pfa+ (1 =2p)fi — (1 = p)fo)* (56)

Inserting V4 into the above equation completes the proof.
O

Using the decomposition from Theorem 1 we obtain

Corollary: (Robertson’s/Price’s Theorem ) Under the assumptions of Theorem 11
the response is given for uniform crossover by

B cov(Fr,(1), Fot)) Va
R(t) =2 f(t) +p(1 —p)(fa—2f1 + f0)4f(t)2' (57)
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The approximation

is called Robertson’s or Price’s version of Fisher's theorem (Lynch & Walsh, 1997;Al-
tenberg, 1995). We have derived the exact equation for two loci. It is not easy to
decide whether the second term is small compared to the first term. But it follows that
for uniform crossover the regression coefficient is a more accurate estimate for realized
heritability than V4/V. Especially it follows that if V4 = 0, the response is exactly
Vol (21(1))

It has to be noted that an equation very similar to Fquation 57 has been proven by
Nagylaki (1991) for diploid organism and one locus. The reader should consult Nagy-
laki(1991) and Lynch & Walsh(1997) if he is interested how researchers in quantitative
genetics tried to compute an exact response equation.

Next we derive the exact response equation for UMD algorithms.

Theorem 12 Under the assumptions of Theorem 11 the response for UMD algorithms
is given by

Va(t) Va(t)
f(t) 2f(t)?

Proof: The difference equation for the univariate marginal frequency is given by

ot +1) = (i) L= p(jf)():? +pfs

Inserting this expression into R(¢ + 1) = f(t+ 1) — f(t) gives the conjecture.

R(t) = +p(L =p)(f2—2/1 + fo) (58)

a

We now compare the two Theorems. Let

Va(t)
2f(t)*

Uniform crossover is an instance of two-parent recombination (TPR). Using this notation

error(t) = p(1 — p)(f2 — 2f1 + fo)

we have shown

Vi(t)+ Wa(t) 1
al ):I_ :2(t) + —error(t),
f(t) 2
Va(t)
Rumpa(t) = —=—=+error(l).
1) = s ety
The structure of the response equation for TPR and for UMDA is very similar. The
error term for TPR is just one half of the error term for UMDA. In particular error = 0
if V4 =0 or the function is linear (f; — 2f; + fo = 0)

We discuss the result with an example.

Rrpr(t)

Example: fo =2, fi =1, fa = 2; p(0) = 0.5
One computes f(0) = 1.5,V4(0) = 0, V5(0) = 0.25, error = 0. The response is given
by R(0) = V2(0)/(2f(0)) = 1/12. Equation 54 exactly predicts the response. For TPR
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the equilibrium is given by p(0,0) = p(1,1) = 0.320194 and p(0,1) = p(1,0) = 0.179806.
For UMDA p(0) = 0.5 is an instable equilibrium.

In order to show the dependency of the genotype frequency dynamics from the fitness
function, we disturb the fitness values a tiny fraction (f; = 2.01).

T p000) [p0.0) [ (LD [ JO] VO] Val) [ Val/VD) [ RW/50
0| 0.250 | 0.250 | 0.250 | 1.5025 | 0.2525 | 0.000012 0.000050 | 0.000058
1] 0.249 | 0.250 | 0.251 | 1.5025 | 0.2525 | 0.000022 0.000088 | 0.000103
10| 0.210 | 0.248 | 0.294 | 1.5064 | 0.2529 | 0.003957 0.015647 | 0.018238
15| 0.105 | 0.219 | 0.457 | 1.5664 | 0.2502 | 0.056296 0.225002 | 0.256628
16 | 0.075 | 0.199 | 0.527 | 1.6074 | 0.2437 | 0.083901 0.344156 | 0.386963
171 0.047 | 0.170 | 0.613 | 1.6661 | 0.2286 | 0.111818 0.489138 | 0.539302
18 | 0.025 | 0.134 | 0.708 | 1.7401 | 0.1995 | 0.127508 0.639117 | 0.688394
19| 0.011 | 0.095 | 0.799 | 1.8190 | 0.1563 | 0.120235 0.769219 | 0.809377
20 | 0.004 | 0.060 | 0.876 | 1.8886 | 0.1079 | 0.093271 0.864725 | 0.892379
30 | 0.000 | 0.000 | 0.999 | 2.0098 | 0.0002 | 0.000160 0.999845 | 0.999884

Table 6: fo == Q,fl == 1,f2 == 201, UMDA

In Table 6 the run is shown for UMDA. We observe that for about 10 generations the
average of the population and the variance remain almost the same. The additive genetic
variance is almost zero, therefore the response is very small. It takes UMDA some time to
move away from the equilibrium point. From generation 15 on the genotype frequencies
move quickly to the optimum.

In Table 7 data is presented for TPR.

t | p(0,0) | p(0,1) | p(1,0) | p(1,1) f(t)
0| 0.250 | 0.250 | 0.250 | 0.250 | 1.50250
1] 0.291 | 0.208 | 0.208 | 0.293 | 1.58654
2| 0307 | 0.190 | 0.190 | 0.311 | 1.62189
31 0313 0.184 | 0.184 | 0.320 | 1.63568
41 0314 | 0.181 | 0.181 | 0.324 | 1.64092
5 0313 | 0.180 | 0.180 | 0.327 | 1.64292
11 | 0.287 | 0.179 | 0.179 | 0.355 | 1.64580
20 | 0.141 | 0.151 | 0.151 | 0.558 | 1.70440
30 | 0.002 | 0.009 | 0.009 | 0.980 | 1.99225

Table T: fo == Q,fl == 1,f2 == 201, TPR

We observe that TPR has a quick start. The first response is large. But TPR is
heading to the equilibrium defined by the fitness values fo = fo = 2. It spins a long
time nearby this equilibrium before it moves to the optimum. In comparison, UMDA is
moving faster to the optimum than TPR despite its slow start.

We have many similar results obtained. This leads us to the conclusion: The dynam-
ics of TPR s more difficult than that of UMDA. But for two loci there is no indication
that TPR s more efficient for optimization than GPR.
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In the next section we will derive an exact equation for the response for an arbitrary
number of loci n.

9 The exact response equation for proportionate
selection

Equation 52 is an exact expression for the response. The equation shows that the re-
sponse is strongly influenced by the additive genetic variance V4. But it is difficult to
estimate the second term, the error. The error term is a summation over 2" genotypes.
Furthermore Ap(&) is needed.

In this section we will derive an exact equation for the response by a different method.
The equation is a generalization of the equation derived in the previous section. It uses
marginal frequencies only. The proot of the equation is based on the multivariate Taylor
expansion.

We recall that the average fitness of the population at generation ¢ is given by

ft)= ;p(wat)f(l'),

where .
p(e,t) = [[ pi(it).
=1

For notational convenience we consider binary genes z; € {0,1}. Then we have
pi(1,1) = 1—p;(0,1). We abbreviate p;(1,t) = p;(¢). If the dependency from ¢ is obvious,
we just write p;. In order to explicitly formulate the dependency of the average from the
marginal frequencies p;, we write

W(pi,....pat) = f(1). (59)
For a differentiable function g(py,...,p,) of n variables the multivariate Taylor ex-
pansion is given by

o(p) = g<a>+i<pj—aj>§—]§’j|pza+;(im—a»a%) 0 lpa

=1 =
1 (<& o ?
+3r (;(}?J‘ — a]‘)a—pj) 9 lpea + e (60)

where p = (p1,...,pn), @ = (a1,...,a,) and the operators d/dp are multiplied formally.
We are now ready to state the main Theorem.

Theorem 13 For UMDA with proportionate selection the response to selection is given

by
Valt) 1T p)F(LLOpi(8)F(1,t) °W
R(t) = + =
( ) w 2 ; W2 apiap]‘
1 pi(0) Fi (1, Op; () F5 (1, Dpe (D) Fi(1,1)  °W
+o + ... (61)
3! i;ﬁj,jé%,i;ﬁk ws apz’apy‘apk
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Proof: We make a Taylor expansion with p = p(t + 1) and a = p(¢). Let Ap;, =
pi(t 4+ 1) — pi(t). We recall that

Ap; = pi(t) FZ(I;/, J
Ap = —(1— pi(ry) A%

w

Noting that W has a special structure - each p; occurs only once in p(@,t) - the Taylor
expansion immediately gives the expressions containing partial derivatives of order two
and higher. We are left to prove that the first term contains the additive genetic variance.
By simple manipulation we obtain

n

Va(t) = Y (1= pi()Fi(0,1)* + pi(t) Fi(1,1)?

=1
& Ap; Ap;
== 1—pit FZ O,t —W— ‘|‘pith’ 1,tW
S0 = RO =R p LW
= WZApZ(FZ(l,t) - FZ(O,t))
=1
L ow
== W Api—,
; Ipi
because obviously
ow

api = Fz(lvt) - Fz(ovt)

Dividing the equation by W gives the Theorem.
O

Remark: Because F;(1,t) = (1 —p;(1))(Fi(1,t) — Fi(0,1)) the difference equation for the

univariate marginal frequencies can also be written

Fi(1,t) — F;(0,1)

Api = pi(t)(1 = pi(1)) TR : (62)

Corollary: For two loct the response of UMDA s given by

V)| pO (L Opa() P 1)
SO oi (FOL1) = F(1.0) = F(0.1) + F(0,0))  (63)

For the special case p1 = py = p, F1 = Fy, f(0,1) = f(1,0) we have

B Va(t) Va(t)
Proof: The first equation directly follows from Equation 61. Only equation 64 has to

be proven. In this special case we have

R(1)

(f(1,1) = f(1,0) = f(0,1) + f(00)). (64)

pFi(1,8) + (1 — p)F1(0,1)* = Va(t)/2.

From
2 — szl(lvt)z

(1 —p)?
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we obtain

2F1(17t)2 _ P

1)/2 = pFi(1,t)*
Va(t)/2 = pFi(1,1)* +p T, 1

Fi(1,1)%.

Therefore
P 1)7 = p(1 = p)Va(t)/2,
Noting that for the special case

pl(t)Fl(lv t)p2(t)F2(17 t) = p2F1(17 t)z

we obtain the conjecture.
O

The corollary shows that for n = 2 Theorem 13 correctly gives the equation proven
in the previous section. But the proof using the Taylor expansion is much simpler. It
is interesting to compute the condition, under which the response is exactly given by
Va/W. Neglecting the trivial case that all F;(1,7) = 0, the necessary and sufficient
condition is

f(,1) = f(1,0) = f(0,1) + f(0,0) = 0 (65)
It is easy to see that this equation is fulfilled if f is linear. In fact, only linear
functions satisfy the equation.
The above technique can be used to explicitly compute the error terms for an arbitrary
number of loci. This is left to further research. We just give the error terms for three
loci.

10 The response equation for three loci

It is instructive to explicitly compute the response equation for n = 3 loci. From Theo-
rem 13 the next corollary can easily be obtained.

Corollary: Let

az = f(lv L, 1)_f(17 L, 0)_f(17 0, 1)_f(07 L, 1)+f(17 0, 0)+f(07 L, 0)+f(07 0, 1)_f(07 0, 0)'
Then for three loci the response for UMDA s given by

R(t) = VAV(”
+p1(t)F1(1’3fj(t)F2(l’t)(f(o,1,1) — £(0,1,0) — £(0,0,1) + £(0,0,0) + psars)
+p2(t)F2(1’tV)ij(t)F3(1’t)(f(1, 1,0) — £(1,0,0) — £(0,1,0) + £(0,0,0) + pras)
+p1(t)F1(1’3f§(t)F3(1’t)(f(l,o,1) — f(1,0,0) — £(0,0,1) + £(0,0,0) + psas)
+p1(t)F1(17t)pz(t)lf/zg(lat)p:a(t)Fa(l,t)ag (66)

Proof: The proof is straightforward. One just computes the partial derivatives of
w.
0
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We are now able to compute the conditions under which R(t) = V4 /W. Neglecting
the trivial case that all F;(1,¢) = 0 we obtain the four equations

= f(O,l,l)—f(O,l,O)—f(0,0,l)—I—f(0,0,0)
= f(l,l,())—f(l,0,0)—f(0,1,0)+f(0,0,0)
= f(l,(),l)—f(l,(),())—f(0,0,l)—I—f(0,0,0)

0 (
0 (
0 (
0 (

The first three equations are similar to Equation 65. One has to fix the allele of one
of the three loci to 0, then the remaining four fitness values have to fulfill the equation
for two loci. If f is a linear function, all four equations are satisfied. In fact, only
linear functions fulfill the equations. We skip the prove and just count the number of
independent variables. For n = 3 loci we have eight fitness values and four equations.
This gives four independent variables. These are necessary and sufficient to specity a
linear function of three variables.

We have not been able to compute the exact equation for the response of two-parent
recombination (TPR). The eight difference equations which describe the evolution of the
genotypes of TPR are very long. In order to make a comparison of UMDA and TPR we
implemented the difference equations for uniform crossover and made many numerical
experiments. The results of the experiments suggest the following conjecture.

Conjecture: [f the fitness function fulfills Equations 67-70 and if the genotypes are in
Robbins’ proportions, then for a genetic algorithm with uniform crossover the response
is given by
R(t) = VA—(t)
w

We have proven the conjecture for two loci in Section 8. The conjecture indicates
that the structure of the response equation for TPR and UMDA is fairly similar, if
genotypes are in Robbins’ proportions. We discuss the conjecture and the problem of
Robbins’ proportions with a numerical example. For notational convenience we sort the
genotypes according to their integer value.

Example: Let the fitness function be defined by the values (5,6,3,4,8,9,6,7). It is a
linear function. Simulation results for TPR and UMDA are given in Table 8.

For this fitness function the difference between TPR and UMDA is very small. For
TPR the linkage disequilibrium term DS() increases for two generations, at the end it
decreases by a factor of 2 each generation. The average of the fitness is very similar.
Similar results can be obtained for other fitness functions which fulfill Equations 67-70.

In Table 9 we investigate linkage disequilibrium with selection and without selection.
The fitness function for selection is as before. The initial genotype frequencies have been
set to p(0,0,0) = 0.65, all other frequencies have been set to 0.05.

Without selection linkage disequilibrium DS is reduced approximately by a factor
of 4 each generation. With selection, the reduction of DS(@ is irregular. Nevertheless
DS is almost the same in both cases up to generation 6. This is the more surprising
as the genotype frequencies are already very different at generation 2. Note that TPR
without selection has a fixed point at about p(0,0,0) = 0.512 as predicted by Geiringer’s
theorem.
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P1 P2 ps | f(t) | V(1) | DSQ
0.5000 | 0.5000 | 0.5000 | 6.00 | 3.50
0.5417 | 0.4167 | 0.6250 | 6.58 | 3.33
0.5794 | 0.3428 | 0.7318 | 7.09 | 2.91
0.6138 | 0.2793 | 0.8149 | 7.50 | 2.40
0.6454 | 0.2256 | 0.8752 | 7.82 | 1.91
0.7019 | 0.1442 | 0.9454 | 8.24 | 1.17
0.5000 | 0.5000 | 0.5000 | 6.00 | 3.50 | 0.000
0.5417 | 0.4167 | 0.6250 | 6.58 | 3.24 | 7.5E-5
0.5701 | 0.3454 | 0.7298 | 7.08 | 2.82 | 1.1E-4
0.6103 | 0.2843 | 0.8113 | 7.48 | 2.34 | 8.1E-5
0.6406 | 0.2320 | 0.8712 | 7.79 | 1.94 | 4.7E-5
0.6690 | 0.1876 | 0.9134 | 8.03 | 1.44 | 2.4E-5
0.6959 | 0.1505 | 0.9423 | 8.22 | 1.18 | 1.2E-5

O Tl W N~ OO0 =W~ O+

Table 8: Gene frequencies for UMDA((top) and TPR (bottom)

Selection No selection
t | p(0,0,0) DSQ | p(0,0,0) DSQ
0 0.650 | 4.00E-02 0.650 | 4.00E-02
1 0.525 | 1.31E-02 0.582 | 1.06E-02
2 0.418 | 3.87E-03 0.548 | 2.73E-03
3 0.321 | 9.30E-04 0.530 | 6.92E-04
4 0.236 | 1.60E-04 0.521 | 1.74E-04
5 0.167 | 2.39E-05 0.516 | 4.37E-05
6 0.113 | 1.34E-05 0.514 | 1.09E-05
7 0.074 | 1.20E-05 0.513 | 2.74E-06
10 0.019 | 2.26E-06 0.512 | 4.28E-08

Table 9: Linkage disequilibrium with selection and without selection

In the next section we discuss the differences and similarities of genetic algorithms

using TPR with UMD algorithms.

11 Two-parent recombination vs. gene-pool re-
combination

The relationship between TPR algorithms and UMD algorithms is very intricate. But
we see more similarities than differences. We conjecture that the class of fitness function
which both algorithms efficiently can solve is very similar. The same is true for the class
of fitness functions they are not able to solve.
Let us summarize the results obtained so far. For UMDA algorithms we have proven
(Theorem 13)
Va(t)

Rumpa(t) = 10 + error(t).
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For TPR a corresponding equation could be obtained for n = 2 loci only.

Rrpr(t) = ZCOU(Fm;Ei;7 o)) + %error(t)

The approximate equation

cov(Frp(t), Fo(t))
RTPR(t) ~ 2 L
f(t)
is called Robertson’s or Price’s Theorem. This approximation can be proven for general n
under the assumption that the regression coefficient of the fitness of the selected parents
is almost identical to that obtained without selection (Miihlenbein et al. (1994)). This
assumption is difficult to verify for a given fitness function.

For genotypes in Robbins’ proportions Fisher’s variance decomposition can be proven

cov(Fuy(1), Fy(1)) = %VA(t) + i%(t) T 21—nVn(t).

Taking these results together we can state that for genetic populations in Robbins’
proportions both TPR and UMDA mainly depend on the additive genetic variance V().
The difference between TPR and UMDA is small. The question remains open how
important linkage disequilibrium is for TPR. The theorem of Geiringer and our numerical
results indicate that for many fitness functions linkage disequilibrium will be small and
be not important.

The dependency on the genotype frequencies makes an interpretation of Vy(t) diffi-
cult. It is wrong to assume that UMDA can solve only linear fitness functions. It can
solve very difficult nonlinear functions if there is always a reasonable V4 () contribution
in the variance V(t). The same is true for TPR. But both algorithms fail in optimizing
fitness functions which have a small V4(#) contribution. This means that the fitness
functions are mainly determined by nonlinear gene interactions.

We give additional empirical evidence for this conjecture. The different sampling
strategies of single-point crossover, uniform crossover and gene-pool recombination can
informally be characterized as follows. Selection is used to define a population of strings
to be used for recombination. If a gene is fixed at a locus, then this gene remains
fixed. Recombination/crossover is only sampling the subspace where the alleles of the
strings differ. Gene-pool recombination samples this space according to the product of
the univariate marginal distributions. Uniform crossover is doing almost the same, but
the sampling is biased by the strings contained in the population. Single-point crossover
samples a subset of the points sampled by uniform crossover. It is very difficult to
describe these sampling strategies formally.

There have been a number of theoretical studies to understand crossover in genetic
algorithms. In the analysis of De Jong and Spears (1992) disruption (probability of de-
stroying higher order schemata) as well as recombination potential (probability of creat-
ing a higher order schema when the parents contain the necessary lower order schemata)
are computed. The authors support evidence that uniform crossover has a higher recom-
bination potential than the other crossover operators. In principle it is possible to use a
specific recombination method where the recombination bias matches the nonlinear gene
dependencies. But if the bias does not match, the result gets worth than with uniform
crossover. So uniform crossover is widely used. But in Section 5 we have shown that
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uniform crossover is moving the genotype frequencies very fast to Robbins’ proportions.
This means that a genetic algorithm with uniform crossover behaves very similar to
UMD algorithms.

From the empirical studies of recombination operators, we will only discuss Eshelman
and Schaffer (1995) because their empirical findings are backing up our theory. Eshel-
mann and Schaffer define two sampling biases: recombinative bias and schema bias.
Recombinative bias is the expected proportion of differing bits that a recombination op-
erator copies to a child from its furthest parent (in terms of Hamming distance). Schema
bias is defined as follows: a recombination operator has no schema bias if all schemata
of the same order are equally likely to be disrupted in a single mating.

A large recombinative bias creates a large standard deviation in the fitness of the
offspring. Recombinative bias is related to the standard deviation of offspring’s fitness.
Schema bias cannot be related to a concept introduced in this paper.

Single-point crossover has weak recombinative bias and strong schema bias. Uniform
crossover and HUX, which swaps ezactly half of the differing bits, have strong recom-
binative biases and weak schema biases. For a fairly large set of problems, Eshelman
and Schaffer show empirically that HUX is the best performer and that single-point
and two-point crossover only perform well on the very artificial “needles on a plateau”
problem. This result is valid if a single recombination operator is used. Eshelman and
Schaffer suggest using a mechanism to switch between operators based on the progress
of the search, although no such mechanisms is likely to be ideal.

In summary: Recombination operators differ in their search biases. All numerical
results obtained so far indicate that a high recombinative bias is necessary for a good
search and this is achieved by an algorithm that uses only univariate marginal frequencies.
No numerical or theoretical evidence has been provided that two-parent recombination
detects and explores useful gene interactions in a systematic way.

12 Analysis of binary tournament selection

The exact response equations (Theorems 9 and 13) have been derived under the as-
sumption of proportionate selection. From these equations the approximate breeders’
equation (16) can be derived by using I = V/2/f(t) (Miihlenbein et al. (1994)). Now
we investigate whether the breeders’ equation 16 is also a good approximation for other
selection schemes. In quantitative genetics this is taken for granted.

Numerical experiments with the Breeder Genetic Algorithm BGA suggest that Equa-
tion 16 can indeed be used for truncation selection. But the numerical experiments have
also revealed that for binary tournament selection this approximation can give a poor
estimate. In this section we will explain why this is the case.

In order to keep the analysis simple, we first consider binary fitness functions of class
unitation, where the fitness values are equal for all chromosomes having the same number
of I's. Let h(x) = >, x;. Then f(x) = g(h(2)). Furthermore, we assume that the
univariate marginal distributions p; of all loci are equal in the initial population:

pi(l) =pa(l) = -+ = pa(l) = p. (71)
Then a genotype x with k& 1’s is contained in the initial population with probability

plx) =pF(1—p)"".
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Theorem 14 Let the fitness values obey the relation

9(0) < g(1) <--- < g(n) (72)

where g(i) denotes the fitness of a genotype with ¢ 1’s. Let p be the univariate marginal
frequency at generation t. Then the marginal frequency p' of an UMD algorithm at
generation t + 1 is given by

po= ptp(l—p (QZH:]S(,C_D( )p’“ﬂ Y1 —p)Prhit

G () ) -

Proof: The frequency P, of a specific genotype with & 1’s is given by
P =pF(1—p) k.

There are (Z) different genotypes with & 1’s. In a binary tournament, P, wins all
tournaments with P;,7 < k. There is a draw if P, meets another genotype with £ 1’s.
In this case the winner is randomly determined. Therefore on the average Pj wins half
of these tournaments. Furthermore, P, will be the winner of a tournament with itself.
The frequency P} after all tournaments have been done is given by:

- (zg (?) P+ (Z) Pk) P (74)

From P} we can compute the univariate marginal frequency p® by summing up all ap-
propriate genotypes, e.g., all genotypes having allele 1 at locus 1. This gives

s

This equation can be easily understood. We just explain it for n = 3 loci. In this
case the four genotypes (1,0,0),(1,0,1),(1,1,0),(1,1,1) have to be summed, giving one
genotype with a single 1, two genotypes with two 1’s and one genotype with three 1’s.
In order to keep the population in linkage equilibrium we have to set

p/ — pS‘
This gives equation (73).
O
Remark: If tournament selection is used, all fitness functions obeying the relation (72)
will lead to the same evolution of the univariate marginal distribution. The absolute
fitness values do not have any influence; only the order relation is important for tourna-
ment selection. The linear function ONEM AX (n), defined by ¢(¢) = 7, obeys the order

relation in Equation 72. Therefore, the evolution of the gene frequencies is equal to the

ONEMAX (n) dynamics for all functions of this class.
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For ONEM AX(n) we obtain from equation (73) using R,(t) = np’ — np

Ralt) = (2 > kZl (Z - 1) ( )p’“”_l(l —p)rh

k=1 57=0
n—1 n—1 n B . 2n—2
+2. (k 1) (k)pz’“ W1 —p) Z p) (75)
k=1 -
Corollary: For ONEMAX(2) we have

po= p+p(l—p)(1l—p+p?),
Ry(t) = 2p(1—p)(1 —p+p°) (76)

For ONEMAX(3) we obtain

Po= p+p(l—p) 1 —2p+4p* —4p” +2p"),

Ra(t) = 3p(1—p)(1 —2p+4p” —4p” +2p"). (77)

In order to compute realized heritability, we need an estimate of the selection dif-
ferential S(t) = fo(1) — f(t). This has been done for binary tournament selection and
the function ONEMAX already in Section 3. From Equations 22 and 24 we observe
that R(¢) = S(¢). This means that realized heritability is 1 for n = 2,3 as expected.
Note that for proportionate selection it follows from Fisher’s theorem 9 that realized
heritability is one for any linear functions. For tournament selection the proof that the

realized heritability is one for ONEMAX, is elementary but lengthy. We recall from
Section 3 that for binary tournament selection

n—1

S.(t) = > (1—D*i))—np, where (78)

=0

oy = 3 (1)r - (79)

7=0

Theorem 15 For ONEMAX (n) the realized heritability of the univariate marginal dis-
tribution algorithm with binary tournament is equal to 1, i.e.

Ry(t) = Su(t)

The proof is given in Appendix 2.
It is difficult to solve Equation 73 analytically. But we can solve it approximately by
using selection intensity. Recall from Section 3 that S(t) ~ Lo(p(1))

Corollary: Under the assumptions of Theorem 1/ the univariate marginal frequency p
is approximately given by the difference equation

I
prp+ f np(l —p) (80)

The solution of this equation is given by
1
p(t) =0.5 (1 + sin (\/—%t + arcsin (2p(0) — 1))) (81)
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Proof: For ONEMAX we have o(p) = {/np(1 — p) for UMD algorithms. This gives
the RS equation

Ry (1) = Ip\/np(1 — p)

From R,(t) = np’ — np the difference equation is obtained. The difference equation (80)
has been approximately solved by Miihlenbein et al. (1993).
O

Numerical simulations have confirmed that Equation 81 is a good prediction for
univariate marginal frequency algorithms. It is also a good approximation for a genetic
algorithms with uniform crossover. In this case p(t) converges more slowly to 1, because
the fitness distribution is slightly different from a binomial distribution. This has already
been observed by Miihlenbein et al. (1994) for truncation selection.

Equation 81 has subsequently been used by Thierens and Goldberg (1994), Back
(1995), and Miller and Goldberg (1996). Their simulations confirm that the approximate
solution is in excellent agreement with empirical results. But in these papers, the difficult
theoretical derivation of the approximate solution is missing. To summarize the major
steps: First, we have shown that the selection intensity of the binomial distribution and
of the corresponding normal distribution are almost identical, even for a small number
of loci. Second, for UMDA the fitness distribution is binomial, and third we had to show
that realized heritability is 1.

Recalling our earlier remark concerning binary tournament selection, we remind the
reader of the surprising fact that Equation 81 is valid for all fitness function obeying the
order relation (72). The function ONEM AX (n) was only needed in order to apply the
breeders’ equation.

It is fairly straightforward to compute the univariate marginal frequencies for other
order relations. For simplicity we just state the results for some instances with two loci.

Theorem 16 Let the fitness values obey the order relation

(1) g(0) < g(1) <g(2),

then the marginal frequency is given by

P =p+p(l—p(l—p+p). (82)
Let the order relation be
(L1) g(0) =g(1) < g(2),
then
P =p+p(l—pp. (83)
Let the order relation be
(IIT) ¢(1) < g(0) < ¢(2),
then
pr=p+pl-p)(2p—1) (84)
Let the order relation be
(V) ¢(0) < g(2) <g(1),
then
p=p+p(l—p(l—p-p. (85)
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Proof: The first case was proven before. We sketch only the proof for the last case, the
other cases can be proven in the same manner. Counting the tournaments we obtain:

p°(0,0) = p(0,0)p(0,0) = (1 — p)*

p*(0,1) = (2p(0,0) 4 2p(1,1) 4+ 2p(0,1))p(0,1) = 2((1 — p)* + p* + p(1 — p))p(1 — p)
p*(1,0) p*(0,1)

P (1,1) = (2p(0,0) + p(1,1))p(1,1) = (2(1 — p)* + p*)p’

From

p=p°(0,1) 4+ p°(1,1),

we obtain after some computation the equation
p=p+pl=p)(l—p=—p). 0

Note that for order relation (III) p = 0.5 is an isolated fixed point. For order relation
(IV), there is a stable attractor in the interior at about p = 0.61803. This value is the
root of p* + p —1 = 0. Table 10 gives some numerical results. For comparison, results
for ONEMAX and proportionate selection are also given. Here p obeys the difference
equation (Miihlenbein et al., 1994)

tl p:()|p:(prop) | p:(I)|p:(ILI) ]| p:(IV)
0 |[ 0.100000 | 0.100000 | 0.100000 | 0.100000 | 0.100000
1 || 0.181900 | 0.550000 | 0.100900 | 0.028000 | 0.180100
2 [ 0.308567 | 0.775000 | 0.101824 | 0.002308 | 0.296380
3 |[0.476401 | 0.887500 | 0.102772 | 0.000016 | 0.424794
47][0.663622 | 0.943750 | 0.103746 | 0.000000 | 0.521250
5 |[ 0.837019 | 0.971875 | 0.104747 | 0.000000 | 0.572919
6 || 0.954827 | 0.985937 | 0.105775 | 0.000000 | 0.597105
7 [0.996099 | 0.992969 | 0.106834 | 0.000000 | 0.608258
81[0.999970 | 0.996484 | 0.107923 | 0.000000 | 0.613444
9 |[1.000000 | 0.998242 | 0.109044 | 0.000000 | 0.615873
10 || 1.000000 | 0.999121 | 0.110199 | 0.000000 | 0.617015

Table 10: Results for binary tournament selection ( order relations (I) till (IV)) and
proportionate selection ONEMAX

Binary tournament selection does not take the fitness values into account; only the
order relations are relevant. This leads to the following behavior. The function ¢(0) =
0,9(1) = €,¢(2) = 1 is contained in class (I). The function ¢(0) = 0,¢(1) = 0,¢9(2) =1
is contained in class (II). They are mathematically almost identical. Nevertheless, the
difference equations for p are very different.

From Theorem 16 another important result can be derived. The fitness function
g9(0) = €,¢(1) = 0,9(2) = 1 is contained in class (III). If the univariate marginal fre-
quency p of the initial population is less than 0.5, then p will converge to p = 0. Now the
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average fitness of the population is given by f = p?. Therefore the response is negative.

Remark: For binary tournament selection the average fitness of the population may
decrease.

For ONEM AX realized heritability is 1, both for proportionate selection and tour-
nament selection. But it can be very different which we show with a contrived example.

Example: Let the fitness function be given by ¢(0) = 0,¢(1) = ¢,¢(2) = 2 with e << 1.
For proportionate selection obviously R(t) = S(t) = 2 — 2p*. Thus realized heritability
is 1, independent of p. For binary tournament selection one computes S(t) = 2p*(1 — p?)
and R(t) = 2p*(1 — p)(1 —p + p*)(3 — 2p + 2p* — p*). Therefore realized heritability is
given by

(L —p+p)3—2p+2p* —p*)
bz(t) —

1+p

Thus by(t) — 3 for p — 0 and by(t) — 1 for p — 1.

p#0,1.

Realized heritability depends on the selection method. For binary tournament selec-
tion it might even be greater than 1. Therefore estimates for realized heritability for
proportionate selection can be very poor for tournament selection.

In the next section we compute an exact response equation for arbitrary fitness func-
tions.

13 The exact response for binary tournament se-
lection

Tournament selection uses only the order relation of the fitness values. Therefore, the
evolution of the univariate marginal frequencies depends on the order relation only. In
the computation of the additive variance the fitness values play a major role. This
indicates that the additive genetic variance may be of limited value for predicting the
behavior of genetic algorithms using binary tournament selection. We show this by
defining a modified fitness function b. With b we can formulate tournament selection as
an instance of proportionate selection. Let us first define “payoft” coefficients

2 f(=)> [(y)

0 fle) < [f(y)
We model tournament selection as a game. Two individuals with genotype & and y
“play” against each other. The one with the larger fitness gets a payoff of 2. If the fitness

values are equal, both will win half of the games. This gives a payoft of 1. Because the
payoff matrix is derived from a game one can show (x and @ denote the same variable)

S p(x.t)ag,p(y,t) = 1.
Ty

After a round of tournaments the genotype frequencies are given by

Pt +1) = p(a, 1) anp(y.t). (86)
Y
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If we set

7t) = Z al’yp(yv t)v
Yy

then the above equation defines proportionate selection for the function b. But b depends
on the genotype frequencies. Furthermore the average remains constant, b(t) = 1.

The difference equations for the univariate marginal frequencies can be written as in
Equation 62
Api = pi(t)(1 = Pi(t))BZ(L t)WBZ((L .

where B; is given by (see Equation 48 and following)

Z b(x,t) Hp]x],

&L|z;=1

;éz

B; can be very different from the terms F; used for proportionate selection and the
additive variance. We now formulate the exact response equation for binary tournament
selection.

Theorem 17 Let Bi(t) = Bi(1,t) — Bi(0,t) and Fi(t) = Fi(1,t) — F;(0,t). Then for
UMDA with binary tournament selection the reponse to selection is given by

Bi(t) x Fi(t)
sz 1 - pz ))T
pit)(1 = pi(1) Bi(t)p;(1)(L = p; (1)) B,(t) O*W
"2 ; w2 Ip:iOp;
WL 3 pi(t)(1 = pa(#)) Bi(t)p; (1) (1 — p; (1)) B;()pw (1) (1 — pi(t) Bi(t)
Vigs iahinn we
PW
dpiOp; Opi (87)

Proof: See Theorem 13.
O

For proportionate selection we have B;(1,t) = F;(1,?). But for tournament selection the
terms B; are usually different from F;. In this case F; cannot be used to estimate the
behavior of binary tournament selection. Particularly the response can be different from
0, even if the additive genetic variance Vj4(t) is 0.

We summarize the major points concerning selection. The three most popular se-
lection methods - proportionate selection, truncation selection and tournament selection
- have their strong and their weak points. The result of tournament selection is inde-
pendently of the fitness values. Only the order relation is used. Proportionate selection
selects too weakly when the population approaches the optimum. This can be observed in
Table 10. At the beginning, p increases at a much faster rate than for binary tournament
selection, giving a faster convergence to the optimum p = 1. But when p approaches 1,
the increase of p gets smaller and smaller.

Truncation selection is a compromise between proportionate and tournament selec-
tion. It uses the fitness values to determine the truncation point, but all selected points
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are treated equally. Therefore heritability for proportionate and truncation selection are
much more similar than for proportionate and binary tournament selection. Therefore
the breeders’ equation can be used for proprotionate as well as for truncation selection.
For binary tournament selection the first term of Equation 87 should be used.

14 An incremental UMDA implementation

The investigations so far have indicated that the UMD algorithm is as plausible as any
genetic algorithm using some kind of two-parent recombination. In order to implement
UMDA, estimates for the univariate marginal distributions are necessary. These esti-
mates are provided by the selected parents. But one can also design a simpler algorithm
that takes previous marginal frequencies into account as well. An algorithm, which does
this, has in fact already been proposed independently from the theory presented in this
paper (Baluja et al., 1995). In this algorithm the univariate marginal frequencies are
updated according to the rule

pi(zit + 1) = pi(zi, 1) + AMri(ai, ) — pili, 1)), (88)

where r;(x;,1) are the marginal frequencies of the selected points and A is a control pa-
rameter. We call the resulting algorithm the incremental univariate marginal distribution

algorithm (IUMDA).
IUMDA
e STEPO: Set t < 1. Set p;(x;,1).

e STEP1: Generate N new points according to the distribution p(x,t) =
H?:lpl(x“t)

o STEP2: Select M < N points according to a selection schedule. Compute the
marginal frequencies r;(x;,t) of the selected set.

e STEP3: Update the marginal frequencies according to equation (88). Set t <«
t+ 1.

e STEP4: If termination criteria not met, go to STEP1.

Note that A influences the speed of convergence. The smaller X is, the slower the conver-
gence speed. Before we show some computational results, we qualitatively analyze the
algorithm. In Equation 88 only the univariate marginal frequency of loci ¢z is used for
updating. Therefore we simplify the notation by omitting the index ¢, i.e. p;(@;,t) = p(t)
and r;(x;,1) = r(t). We start with the simplest case.

Theorem 18 Assume that r(t) = ¢ with 0 < ¢ < 1. Then
pt+ 1) =p()(1 =X —c(l =N +c t=0,1,... (89)
The proof is straightforward and will be omitted. We obviously have

limy—oop(t) = c.

In real applications r(¢) will oscillate. A qualitative analysis of the IUMDA algorithm
has been done by Kvasnicka et al. (1995).
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Theorem 19 If the difference equation (88) can be approximated by the differential
equation

W0 (1) = i), (90)
the solution is given by
p(t) = p(1)e™ + Ae™ /Ot r(r)edr. (91)

Equation 91 cannot be used for prediction because r(t) is not known in advance, but
it explains the qualitative behavior of the algorithm. One often observes that IUMDA
consists of two phases. In the first phase (0 < ¢ < 1) r(f) more or less randomly oscillates
about a mean < r(¢) >¢'. Then it moves to either 0 or 1, forcing p(t) also to move in
this direction.

In Table 11 we give numerical results for the linear function ON EM AX. Note how
A influences the convergence speed. For ONEMAX X = 0.25 leads to a much faster
convergence than A = 0.1. Because the size of the population N was fixed and very
large, the speed of convergence is almost independent of the size of the problem, n. For
difficult multi-modal fitness functions, the success of [IUMDA critically depends on the
parameters A and N. We omit a detailed discussion here. It is obvious that [UMDA
suffers from the problem all algorithms using univariate marginal distributions have:
they are not able to handle higher-order gene interactions.

A=01 A=0.25 |
n=30 n=30 n=60 n=90
t p | std(p) p | std(p) p | std(p) p | std(p)

10 1 0.726 | 0.049 || 0.952 | 0.024 | 0.887 | 0.086 | 0.834 | 0.122
20 | 0.893 | 0.025 || 0.997 | 0.001 | 0.993 | 0.005 | 0.985 | 0.014
30 | 0.963 | 0.009 || 1.000 | 0.000 | 1.000 | 0.001 | 0.999 | 0.001

Table 11: IUM DA Results for ONEMAX: N = 1024

15 From recombination to the estimation of distri-
butions

Practical and theoretical investigations have shown the limitations of simple genetic
algorithms. Therfore new methods have been tried or are being developed to detect and
exploit nonlinear gene interactions. They can be classified as follows:

e Adaptive recombination
e Explicit detection of relations (Kargupta & Goldberg, 1997)
e Dependency trees (Baluja & Davies, 1997)

e Estimation of distributions (Miihlenbein & Paafl, 1996, De Bonet et al., 1997))
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Adaptive recombination uses a number of heuristics to modify two-parent recombina-
tion. Kargupta’s (1996) Gene Expression Messy Genetic Algorithm (GEMGA) tries to
detect dependency relations by manipulating individual substrings. GEMGA has only a
local view of the data. Kargupta and Goldberg (1997) support our view concerning the
limitations of Mendelian recombination: “Unless GAs do a better job in linkage learn-
ing, they will continue to search poorly in relation space.”
all the statistical information contained in the population of selected points to detect

The last two methods use

dependencies. They have a global view of the data. Conceptually they can be described
as follows (estimation of dependency algorithm (EDA)).

EDA

o STEP 0: Set t <= 1. Generate N > 0 points randomly.

e STEP 1: Select M < N points according to a selection method. Estimate the
distribution p®(@) of the selected set.

e STEP 2: Generate N new points according to the distribution p*(@). Set t < t+1.

e STEP 3: If termination criteria are not met, go to STEP 1.

The estimation of distributions is a notoriously difficult statistical problem. Furthermore,
for optimization there is a trade-off. If lots of computing time has to be used to get a
good estimate of the distribution, then this effort has to pay off. It has to lead to a
substantial reduction of function evaluations in order to beat a simple algorithm like
UMDA.

At least for continuous genes, one method that efficiently detects second order in-
teractions does exist; the method is known as principal component analysis PCA. The
technique of first doing a principal component analysis and then performing gene-pool
recombination in the transformed space, has been successfully used for the optimization
of difficult fitness functions by Voigt and Miihlenbein (1995). It is interesting to note
that in evolution strategies the need for second order models has been recognized very
early (Back & Schwefel, 1993).

For discrete genes an obvious extension of univariate marginal distribution algo-
rithms are multivariate ones. But it is difficult to generate p(@) from multivariate
marginal distributions. We just demonstrate the problem with an example. For n = 4
loci for instance, we may use p() = p(x1,x2) p(as, x4). But then four of the six bi-
variate distribution are left out. There exist methods to solve this problem by solv-
ing a system of equations, but it seems easier to start with conditional distributions
plai|ey, ..., @1, g1, . .., T,) tO Teconstruct interactions between the variables.

With®_; := (21,..., %1, Tig1,. .., 2,) let p(a;|@_;) denote the probability of a; given
x_;. Besag (1974) has proven that the n different conditional distributions p(a;|®_;),
i =1,...,n, completely determine the joint distribution p(a).

An algorithm based on the above conditional distributions is presented in (Miihlen-
bein & Paaf, 1996). It is computationally so expensive that it is of theoretical value only.
A more pragmatic way is to limit the conditional distributions to only pairwise condi-
tional probabilities p(x;|z;). Then one should generate samples that match as closely as
possible the true joint distribution p®(#). This method has been used by De Bonet et
al. (1997).
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By introducing memory it is possible to incrementally change the sampling distribu-
tion instead of relying only on the distribution p®(«). This method was introduced with
the IUMDA algorithm. TUMDA has been extended by Baluja and Davis (1997). Like
Bonet et al. (1997) they restrict the estimation to pairwise conditional probabilities.
These probabilities define a conditional dependency tree. This representation is more
general than the chain used by De Bonet et al. (1997).

Future research will show which of the different methods are of practical relevance
for optimization. It has to be investigated if the effort to compute second or even higher
order interactions really pays off, either in getting much better solutions or in reducing
the number of function evaluations to get the same quality of solutions. For the more
theoretical analysis it is an open research question whether exact response equations can
be computed for some of the new methods.

16 Conclusion

In this paper we have computed exact equations for the response to selection under the
assumption that the genotypes are in Robbins’ proportions. For proprotionate selection it
follows that UMD algorithms mainly exploit the additive genetic variance. But the exact
response equation for tournament selection differs from that of proportionate selection
already in the first term. It can even be wrong that the response is zero if the additive
genetic variance is zero. Furthermore realized heritability can be different for tournament
selection and proprotionate selection. These results weaken the classical concept of
heritability at least in the context considered in this paper - discrete genes with arbitrary
fitness contributions.

Our results have been derived under the assumption of an infinite population. Fur-
thermore mutation has been neglected. It has been shown that for genetic algorithms
with a reasonable population size and small mutation the infinite population size equa-
tions are a reasonable approximation (Miihlenbein et al., 1994). But our results cannot
be extended to genetic algorithms using a small population and a high mutation rate.
Here stochastic effects have to be modelled. Given the mathematical difficulty of the in-
finite population size model, we doubt that a mathematical analysis of finite populations
will be possible.

We have supplied a number of arguments that genetic algorithms with two-parent
recombination are not so much different from UMD algorithms. They are also not able
to detect nonlinear gene interactions in a systematic way. This result explains why ge-
netic algorithms using two-parent recombination have difficulties in optimizing nonlinear
fitness functions with interacting genes. We have outlined new methods to detect in-
teracting genes in nonlinear fitness functions. These methods rely on the estimation of
empirical distributions, a difficult problem of statistics. Future research will show if one
of the new methods will be of practical relevance for optimization.

Appendix 1

Here we prove that for UMDA the response is always greater or equal to zero. The
Theorem follows from an inequality proven by Baum and Eagon (1967). We just state
their inequality in our notation. For notational convenience we assume binary genes.
Then we have for each loci two marginal frequencies py = pi(1) and pis = pi(0) =
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1 —pi(1). We furthermore define the average of the population as

W(pt,....pa,t) = f(1)

Theorem 20 (Baum, Eagon) Let W(p) = W({pi;}) be a polynomml with nonnega-
tive coefficients homogeneous of degree n in its variables p;;, + = 1,...n, g =1,2. Let
p = {pij} be any point of the domain D : p;j > 0,pyi + pir = 1. For p € D let p’ denote

the point of D whose 1,5 coordinate is given by

p”apu |
pzlapl | +p228p2 |

Py = (92)

Then W(p') > W(p) unless p’ = p.

In order to apply the Theorem we just have to show that Equation 92 is identical to
our Equation 47 for the univariate marginal frequencies. Obviously

ow -
opa 0 = SV
ow -
opa 0 = O

Furthermore the identity

pilfi(lvt) —I_pi?fi(ovt) = W(plv s ,pn,t)

is valid. Combining the above equations shows that the frequencies of the UMDA algo-
rithm obey Equation 92. Therefore Theorem 10 follows from the above Theorem.

Appendix 2

Let R,(t) be defined by Equation 75 and S, () by Equation 78.

Theorem For ONEMAX(n) the realized heritability of the univariate marginal

distribution algorithm with binary tournament is equal to 1, i.e.
R (1) = Su(t)

Proof: We introduce

Sp(t) —np 1%
si = 20 —1—5§B%u»
with '
Bi(n,p) = Z (T,L)pj(l—p)”_], 1 =0,1,...n
=\
Similarly we use
gy = 0=,

We compute
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Let us introduce

Now R (t) = S(t) holds if

n—1 n
n = Z B?(n,p) + Z iPn; (2Bi(n,p) — P,,).
=0 =1

Because of B%(n,p) = 1, the equation

n

=0

has to be proven. Using B;(n,p) = Z;:o P, ; we have to show

n+1 = Z(ZP;ﬁz Y. PujPur+2iP2,

=0 \ ;=0 0<y<k<s
n—1

—I-QZ Z PnJ'Pn’]‘ — ZPn,i .
7=0

Evaluating the first sum we obtain

n n n—1
;=0

=0 i 0<j<k<i j=0
Using the identity

n 2 n
1= (ZPTW) :ZPT?,Z—I_Z Z Pn,an,kv
=0

0<j<k<n

we have to prove

n n—1

=0 0<y<k<s =0 0<j<k<n

By carefully counting the number of instances of P, ; the above identity follows. This

completes the proof.
O
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