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Abstract
The Breeder Genetic Algorithm �BGA� was designed according to the theories and methods

used in the science of livestock breeding� The prediction of a breeding experiment is based

on the response to selection �RS� equation� This equation relates the change in a popula�

tion�s �tness to the standard deviation of its �tness� as well as to the parameters selection

intensity and realized heritability� In this paper the exact RS equation is derived for propor�

tionate selection given an in�nite population in linkage equilibrium� In linkage equilibrium the

genotype frequencies are the product of the univariate marginal frequencies� The equation

contains Fisher�s fundamental theorem of natural selection as an approximation� The theorem

shows that the response is approximately equal to the quotient of a quantity called additive ge�

netic variance� VA� and the average �tness� We compare Mendelian two�parent recombination

with gene�pool recombination� which belongs to a special class of genetic algorithms which we

call univariate marginal distribution algorithms �UMD� algorithms� UMD algorithms keep the

genotypes in linkage equilibrium� For UMD algorithms an exact RS equation is proven which

can be used for long term prediction� Empirical and theoretical evidence is provided which in�

dicates that Mendelian two�parent recombination is also mainly exploiting the additive genetic

variance� We compute an exact RS equation for binary tournament selection� It shows that

the two classical methods for estimating realized heritability� the regression heritability and the

heritability in the narrow sense may give poor estimates� Furthermore realized heritability for

binary tournament selection can be very di	erent from that of proportionate selection� The

paper ends with a short survey about methods which extend standard genetic algorithms and

UMD algorithms by detecting interacting variables in nonlinear �tness functions and using this

information to sample new points�
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� Introduction

The Breeder Genetic Algorithm 	BGA
 	M�uhlenbein et al�� ���
 was designed according
to the methods and theories used in the science of livestock breeding� Before we could
implement BGA� we �rst had to �nd and understand the most important concepts in the
science of breeding� Then we had to transfer these concepts to the domain of breeding
arti�cial populations on a computer� The �rst step was more di�cult than expected� The
main reason was that variation in most traits of animals and plants is almost continuous�

�Real World Computing Partnership
�GMD � Forschungszentrum Informationstechnik





and the classical laws of Mendel do not deal with this case�
The methods for analyzing measurements on continuously varying traits of individ�

uals � and� from these� describing how the traits are inherited and then predicting the
performance of an individual�s relatives � form the discipline of quantitative genetics�
This �eld deals with populations of individuals and describes the properties of traits in
terms of their means and their degree of variation in the population� From these mea�
surements� parameters such as heritability are derived� The usefulness of this approach
has to be judged by its ability to describe and predict observations� Predictive equations
in quantitative genetics can be of two kinds� 	
 microscopic� based on changes of gene
frequency at individual loci � which might then� for example� be summed over the loci
to derive the changes in the trait � and 	�
 macroscopic� based on the measurement of
traits in a population� The latter is the approach of the biometricians� who� for example�
might perform a regression of progeny �tness on parent �tness under the assumption that
traits are normally distributed in both populations�

Selection poses a major problem in quantitative genetics� The biometric approach
assumes that heritability remains constant� but since selection alters gene frequencies�
it also alters heritability� and the assumption becomes invalid� In breeding practice�
however� heritability usually does in fact remain constant for a number of generations�
Quantitative genetics has had a major in�uence on modern statistics� We mention

only two important contributions� Linear regression was invented by Galton in ���
as a means of characterizing the inheritance of a trait� The analysis of variance and
covariance was invented by Fisher in �� to compute the correlation between relatives�
using a genetic chance model where large numbers of genes in�uence a single quantitative
trait�
In this paper we investigate how to predict the evolution of an arti�cial genetic

population such as is used by BGA by the classical techniques of livestock breeding�
For the analysis we assume an in�nite population� O�spring are created by mating and
recombination of genes� Mutation is neglected�
The outline of the paper is as follows� First� we de�ne and discuss the basic concepts

of the science of breeding� response to selection� selection intensity� and heritability�
These concepts are used to formulate the classical response to selection 	RS
 equation�
Because of its importance for breeding it is also called the breeders� equation� In the
remaining part of the paper we mainly investigate under which conditions this equation
is a good approximation for the response� First we discuss selection intensity in depth�
showing that it is fairly independent of the �tness distribution� Then we investigate
the response for two loci� It turns out that the mathematical analysis of Mendelian
two�parent genetic recombination 	TPR
 is di�cult� even for two loci� Selection leads
the population away from linkage equilibrium� but the di�erence equations that describe
gene�frequency evolution seem impossible to solve unless the population is assumed to re�
main in linkage equilibrium� In linkage equilibrium genotype frequencies are the product
of the univariate marginal frequencies�
We then analyze the problem of linkage disequilibrium� We numerically investigate

a theorem of Geiringer 	���
� It states that if recombination is applied in a large
population without selection� the population will move towards linkage equilibrium� In
Section � we prove an exact expression for the response to selection� If the genotype
frequencies are in linkage equilibrium� the response mainly depends on a value called the
population�s additive genetic variance�
We then investigate algorithms that keep the gene frequencies in linkage equilibrium�
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We call these algorithms univariate marginal distribution 	UMD
 algorithms� For UMD
algorithms we derive an exact equation for the response which uses univariate marginal
frequencies only� We compare in detail TPR and UMD algorithms for two and three loci�
Binary tournament selection for UMD algorithms is discussed in Sections � and ��
The question remains open whether the results for UMD algorithms can be extended

to two�parent recombination as it is used in standard genetic algorithms� A mathematical
solution of this problem could be based on an extension of our Theorem �� Empirical
evidence for the conjecture that TPR is also mainly exploiting the additive genetic
variance and not discovering and exploiting higher order gene interactions is summarized
in Section �
Given the empirical and theoretical evidence that genetic algorithms with TPR have

the same limitations as UMD algorithms concerning the optimization of �tness functions
with interacting genes� we decided to stop our e�orts to compute the exact response
for TPR algorithms� It is easier to extend UMD algorithms because there are known
statistical techniques which detect gene interactions� Some of these techniques are brie�y
described in Section ��
If not otherwise noted� we assume discrete genes� an in�nite population and the

recombination operator produces one child from two mating parents�

� Response to selection� heritability and regression

The Breeder Genetic Algorithm 	BGA
 is based on the classical science of livestock
breeding as it was formulated by Falconer 	��
 in the ���s� In this section we will
describe the major concepts and give also some historical remarks about the researchers
who made major contributions�
Let �f	t
 be the average �tness of the population at generation t� The response to

selection is de�ned as�

R	t
 � �f	t� 
� �f	t
� 	


The amount of selection is measured by the selection di�erential� S	t


S	t
 � �fs	t
� �f	t
� 	�


where �fs	t
 is the average �tness of the selected parents� The equation for the response
to selection relates R and S�

R	t
 � b	t
 � S	t
� 	�


where b	t
 is called the realized heritability� The concept of realized heritability was �rst
introduced by Falconer 	��
� The importance of the above equation for quantitative
genetics has been recently emphasized by Lynch and Walsh 	���
� They just call it the
Breeders� equation�
While the selection di�erential S is a convenient and simple measure of selection� it

does not really tell much about the strength of selection� Therefore breeders introduced
the normalized selection di�erential� the selection intensity I� It is de�ned as�

I	t
 �
S	t


�	t

� 	�


�



where �	t
 �
q
V 	t
 denotes the standard deviation and V 	t
 the variance of the �tness

values�
The concept of selection intensity was introduced much earlier by Haldane 	���


to investigate the in�uence of selection� For large livestock populations breeders mainly
use mass or truncation selection� Here the b� � Nc best individuals are selected from
a population of size N � � � � � � If the �tness f	t
 has a normal distribution�
the selection intensity I� for a given � can be computed fairly easily 	Falconer� ��
�
Haldane observed that a high competition� i�e�� a very small value of � � does not lead
to a correspondingly large increase of the response� The relation between � and the
response is highly nonlinear� In contrast� the response depends linearly on the intensity
of selection� The nonlinearity is hidden in the relation between I� and � 	see the curves
in Falconer 	��

� The selection intensity is independent of t� it depends on the �tness
distribution� This problem will be investigated in the next section�
Using the selection intensity one obtains the equation

R	t
 � I � b	t
 � �	t
� 	�


The response depends on the selection intensity� the realized heritability� and the stan�
dard deviation of the �tness distribution� In order to use the above equation for predic�
tion� one has to estimate I� b	t
 and �	t
� The estimation of b	t
 and �	t
 is di�cult� In
this paper we will concentrate on the estimation of b	t
�
Falconer 	��
 showed that realized heritability can be estimated by the regression

coe�cient from o�spring to mid�parent� The regression coe�cient is given by 	Rao�
���


bFoFmp	t
 �
cov	Fmp	t
� Fo	t



var	Fmp	t


� 	�


Fo is a variable that represents the �tness of an o�spring� Fmp is the mean �tness of its
two parents� also called mid�parent �tness � The variance of the mid�parent �tness is
half the variance of the parent �tness� var	Fmp	t

 � V 	t
��� The regression coe�cient
is determined for the whole population� not using selection according to �tness�
If the regression coe�cient of selected parents and o�spring is identical to the regres�

sion coe�cient which is obtained without selection� then it can be used as an estimate
of realized heritability 	M�uhlenbein et al�� ���


b	t
 �
cov	Fmp	t
� Fo	t



�
�V 	t


� 	�


The above assumption turns out to be very strong� For complicated �tness functions it
is not satis�ed�
Historically� the regression coe�cient was introduced much earlier than realized her�

itability� It was invented at the end of the last century by Galton and Pearson� The
regression coe�cient is the foundation of the purely macroscopic approach developed by
a school that later came to be called the biometricians� After the rediscovery of Mendel�s
law a new school arose� theMendelians� The most famous biometrician Pearson �proved�
	Pearson� ���
 that Mendel�s laws or any modi�cation of them are useless for predicting
the regression coe�cient� used very successfully by the biometric approach� This posed
a major problem for the Mendelians� The battle between these two schools continued
for more than �� years�
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Judged from todays perspective� Fisher in �� derived for certain �tness functions
the biometric regression coe�cient as well as the correlation coe�cient between relatives
from a genetic chance model which can be considered as an extension of Mendel�s model
to the case of many genes in�uencing a single trait� Fisher�s paper is considered to be
the most important one in quantitative genetics� It has lead in statistics to the analysis
of variance� In order to understand the result of Fisher�s paper� some de�nitions are
necessary�
Let x � 	x�� � � � � xn
� xi � f�� � � � � � Lg be a genotype� let f	x
 be the �tness and

p	x� t
 be the frequency at generation t� Then the univariate marginal frequencies are
given by

pi	xi� t
 �
X
xjxi

p	x� t
� 	�


where the sum is taken over all x with xi held �xed�
De�nition�The genotype frequencies are in Robbins� proportions �Robbins� ����	 if

p	x� t
 �
nY
i��

pi	xi� t
� 	�


Robbins� proportions simply state that the xi are statistically independent� This is also
called linkage equilibrium in population genetics�
The following theorem has been proven by Fisher 	��
 under strong assumptions�

A concise proof can be found in Asoh and M�uhlenbein 	���a
�

Theorem � Let the gene frequencies be in Robbins� proportions
 Then the variance of
the population can be decomposed at generation t into

V 	t
 � V�	t
 � V�	t
 � � � �� Vn	t
� 	�


The covariance can be decomposed into

cov	Fmp	t
� Fo	t

 �


�
V�	t
 �



�
V�	t
 � � � �� 

�n
Vn	t
� 	


V�	t
 is called the additive genetic variance VA	t
� For gene frequencies in Robbins�
proportions a closed expression for VA can be found

VA	t
 �
nX
i��

LX
v��

pi	v� t
 	Fi	v� t


� �

It will be derived in Section �� For a precise de�nition of the interaction variances
Vj see Asoh and M�uhlenbein 	���a
�

VA	t
 will be of critical importance for our analysis� It depends on the univariate
marginal frequencies� making an interpretation di�cult� Fisher later applied his method
to general statistical problems� It lead to the development of the analysis of variance
	ANOVA
 and covariance� In statistical problems there is no evolving population� instead
the concept of a representative sample set is used� Therefore it is implicitly assumed that
the pi are constant� This assumption has been also made by Reeves  Wright 	���

who reintroduced ANOVA into the theoretical analysis of genetic algorithms� They used
ANOVA to compute the epistasis of some �tness functions� But for a genetic population
the ANOVA decomposition can be used only for the initial population which is generated

�



randomly� Later pi will change according to the dynamics of the genetic population� This
might change the decomposition dramatically�
From the above theorem using Equation � we obtain the estimate�

Corollary� Under the assumptions of Theorem � the regression coe�cient can be esti�
mated by

bFoFmp	t
 �
�
�VA	t
 �

�
�V�	t
 � � � � �

�nVn	t

�
�
V 	t


� 	�


Both the de�nition and the computation of the interaction variances is di�cult�
Therefore Fisher�s paper was of theoretical value only� It shows that the connection
between a genetic microscopic model and macroscopic regression is very complex�
In ��� Fisher made another important contribution� which he called the fundamental

theorem of natural selection 	FTNS
 	Fisher� ���
� Fisher claimed for proportionate
selection that

R	t
 � VA	t

�f	t


� 	�


where VA is the additive genetic variance introduced before� It is easy to show that for
proportionate selection we have 	M�uhlenbein et al�� ���


S	t
 �
V 	t

�f	t


�

Therefore Fisher�s theorem can be written as

R	t
 � VA	t


V 	t

S	t
�

This suggests another estimate of realized heritability� It is called the heritability in the
narrow sense denoted as h� 	Falconer� ��
�

b	t
 � h�	t
 �
VA	t


V 	t

� 	�


Now we arrived at the following problem� From Fisher�s FTNS follows that� if VA � ��
the realized heritability is zero� But the regression coe�cient is as large as ��� for VA � �
and V� � V � Which estimate is better! This problem will be investigated in Section ��
Breeders use heritability in the narrow sense as the estimate of realized heritability
	Falconer� ��
� This is justi�ed because under the assumptions of Theorem  the
relation

h�	t
 � bFoFmp	t
 	�


holds� Inserting h� into Equation � gives the famous response to selection equation used
by breeders 	Falconer� ��


R	t
 � I � h�	t
 � V ���	t
 � I � h	t
V ���
A 	t
� 	�


The response to selection is approximately equal to the product of selection intensity�
heritability in the narrow sense� and the square root of the additive genetic variance


�



In genetic algorithms� but also in breeding of livestock the goal is not to optimize the
response for one generation� but the cumulative response for T generations� This is given
by

RT �
TX
t��

I � h	t
 � V ���
A 	t
� 	�


This is a very short description of the major concepts and results in classical quantitative
genetics� The di�erent de�nitions of heritability are at �rst confusing� Some of the results
mentioned have been only vaguely derived for diploid organisms� In their forthcoming
book Lynch and Walsh 	���
 derive conditions under which the breeders� equation can
be applied� Furthermore they discuss when this equation should not be used from the
viewpoint of quantitative genetics�
We believe that researchers in genetic algorithms should be familiar with the basic

concepts of quantitative genetics� We have already mentioned the analysis of variance� A
second example is the correlation between parents and o�spring� It was de�ned by Galton
and Pearson� In �� Manderick et al� proposed the correlation between parent and
o�spring as a measure for comparing genetic operators� But the correlation coe�cient
and the regression coe�cient bFoFmp are closely related 	see M�uhlenbein et al�� ���
�
The RS equation makes it clear that the correlation measure alone is not su�cient to
de�ne a good genetic operator� Instead the product of correlation and the variance of
the �tness of the o�spring has to be taken� This is a mathematical formulation of the
exploitation vs� exploration problem� A high correlation means that o�spring are very
similar to parents 	exploitation
� a high variance means that o�spring might be very
di�erent from parents�
In the next Section we investigate the concept of selection intensity in more detail�

� Selection intensity

In order to compute selection intensity� we will use the notation and the results of
order statistics� 	For a recent introduction into order statistics� see Arnold et al�� ����

Order statistics has already been used by B�ack 	���
 to compute the selection intensity
of truncation selection and tournament selection� but B�ack only investigated normal
distributions� A detailed investigation of selection intensity for di�erent selection schemes
has been done by Blickle  Thiele 	���
� They also assume a normal distribution� In
this section we will compute the selection intensity for some well�known discrete and
continuous distributions�
Let X��s � X��s � � � � � Xs�s denote the order statistics of a random sample of

size s 	i�e�� Xi�s is the ith smallest member of the sample set
� The sample is drawn
from a continuous distribution with probability density function 	PDF
 d	x
� cumulative
distribution function 	CDF
 D	x
� mean �� and variance ��� We �rst will compute
the selection intensity Is for tournament selection� then for truncation selection� In
tournament selection� only the largest value�Xs�s� is taken� Therefore we have to compute

Is �
E	Xs�s
� �

�
� 	�


The expected value of the largest element is given by

E	Xs�s
 �
Z ��

��
xds�s	x
dx� 	�


�



where ds�s is the PDF of Xs�s� which for continuous distributions was shown by Arnold
et al� 	���
 to be�

ds�s	x
 � sD	x
s��d	x
� 	��


For a given continuous distribution one can use these equations to compute the selection
intensity Is� In Table  we give results for the following PDF�s� the normal distribution
N	�� 
� the uniform distribution U	�� 
� the exponential distribution EXP� and several
discrete binomial distributions� B	n� p
� In the case of the binomial distributions� we
have 	Arnold et al�� ���


E	Xs�s
 �
n��X
i��

	 �D	i
s
� 	�


For tournament sizes of ten or less 	i�e�� s � �
� the selection intensity is very similar
for all distributions considered� despite the wide range of values for E	Xs�s
� This means
that the values obtained using a normal distribution can be used as an approximation�
The binomial distribution arises if the �tness function is the discrete ONEMAX function
of size n 	M�uhlenbein et al�� ���
� The selection intensity for this discrete distribution
is surprisingly similar to those for the continuous distributions�

s E�Is N�
� �� B���� 
��� B��
� 
��� B���� 
��� B��
� 
��� U�
� �� EXP

 E�X� 
����� ����� ����
� 
����� ���
Is 
����� 
����� 
����� 
����� 
��

� E�X� ����� ����� ������ ����� ����
 
����� ����
Is ����� ������ ������ ����� ����� ������ �����

�
 E�X� ������ �
����� ������ �����
 ��
�� 
��
�
 ����
Is ������ ������ ���
�� ������ ������ ������ �����

� E�X� � �� �
 �� �
 ��
 �

Is � ����� ���� ������� ������ ����� �

Table � E	Xs�s
 and selection intensity Is for tournament selection of size s

For discrete distributions with a small number of states� the selection intensity may
be very di�erent from that obtained by assuming a normal distribution� This is shown
in the next theorem�

Theorem � For the binomial distribution B	�� p
 we have

E	X���
� � � �p	 � p
	 � p � p�
 	��


I�	�� p
 �
q
�p	 � p
	 � p� p�
� 	��


For the binomial distribution B	�� p
 we obtain

E	X���
� � � �p	 � p
	 � �p � �p� � �p� � �p�
 	��


I�	�� p
 �
q
�p	 � p
	� �p � �p� � �p� � �p�
� 	��


Proof� We prove the theorem for B	�� p
� Obviously � � �p� With D	�
 � 	� p
� and
D	
 � �p� we obtain from Equation � the term E	X���
��� The selection intensity

is obtained by dividing this expression by � �
q
�p	 � p
� The proof for B	�� p
 is

�



similar�
�

For the binomial distribution the selection intensity depends on the parameters n and
p� But even for n � � the value obtained from the normal distribution is approximately
valid in the range ��� � p � ���� as can be seen in Figure � We obtain I�	�� ���
 � ������
whereas the normal distribution gives I� � ���� 	see Table 
�
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Figure � Selection intensity I� for B	�� p
�

The computation of the selection intensity is more di�cult for truncation selection�
With truncation selection the k best values are selected where k depends on the trun�
cation value � � If � is the average of the population� the selection intensity is de�ned
as

I	k�N
 �
�
k

PN
i�N�k�� Xi�N � �

�
� 	��


where N now denotes the sample size instead of s in order to be consistent with the
notion of population size� The cumulative distribution function CDF of I	k�N
 does
not have a closed form" however� its mean and variance can be computed from the
means� variances� and covariances of the order statistics� Extensive tables are available
for the normal distribution 	Falconer� ��
� Truncation selection has been widely used
in evolution strategies� For normally distributed variates we have I	k�N
 � ck�k�N � where
ck�k�N is called the progress coe�cient in evolution strategies 	B�ack 	���

�
A closed solution of the expected value of I	k�N
 can be obtained if the sample is

from an exponential distribution 	Nagaraja� ���
�

E	I	k�N

 �
NX

i�k��

i��� 	��


If N is large then this can be approximated as�

E	I	k�N

 � ln	
N

k

� 	��


For arbitrary distributions� even if the sample values are dependent� it can be shown

�



that 	Nagaraja� ���


E	I	k�N

 �
s
N � k

k
� 	��


For su�ciently large N � and for k � b�Nc� this gives the bound

E	I	k�N

 �
s
 � �

�
� 	��


In the following table we compare the selection intensity of exponentially distributed
with normally distributed �tness values�

Dist� � N�� N�� N��� N�� N �� ��
�

EXP 
�� 
���� 
���� 
���� 
���� 
���� ��

N�
� �� 
���� 
��� 
���
 
���� 
���� ��


EXP 
�� ���� ���� ����� ����� ����
N�
� �� ����� ��
� ��� ���� ����

EXP 
��� ����� ����� �
�� ���
N�
� �� ���� ��� ����� ���

Table �� Selection intensity for exponential and normal �tness distributions� The far�
right column is computed from Equation ���

One can see from Table � that the di�erence between the selection intensities for
normal and exponential distributions is roughly ��#� For � � ��� the selection intensity
for the normal distribution is higher� This is reversed with more severe selection 	� �
����
�
The upper bound 	Equation ��
 is between ��# and ��# higher than the intensi�

ties obtained from the distributions� Since we are only attempting to approximate the
RS equation� it seems reasonable to use the selection intensity derived for the normal
distribution as a �rst approximation of I� �
For an accurate prediction the speci�c distribution has to be taken into account� This

was done by Voigt and M�uhlenbein 	���
� who showed that for continuous unimodal
�tness functions� the �tness distribution is better approximated by a gamma distribution
than by a normal distribution�
We now turn to the investigation of realized heritability� beginning with an investi�

gation of two�parent genetic recombination as it is normally used in genetic algorithms�

� Analysis of two�parent recombination for two loci

The di�culty in analyzing two�parent genetic recombination 	TPR
 will be shown by
way of a simple example using proportionate selection and two loci� In this case there
are four possible genotypes x� 	�� �
� 	�� 
� 	� �
� and 	� 
� We denote their �tness
values f	x
� Let p	x� t
 be the frequency of genotype x at generation t� For simplicity
we restrict the analysis to uniform crossover 	Syswerda� ���
� an example of two�parent
recombination�

�



Theorem � For proportionate selection and uniform crossover the gene frequencies obey
the following dierence equation

p	x� t� 
 �
f	x

�f	t


p	x� t
 � 	�
jxj���
�

Ds	t

�f	t
�

� 	�


jxj� denotes the number of ones in x
 �f	t
 �
P
x p	x� t
f	x
 is the average �tness

of the population� and Ds	t
 is de�ned as

Ds	t
 � f	�� �
f	� 
p	�� �� t
p	� � t
 � f	�� 
f	� �
p	� �� t
p	�� � t
 	��


Proof� For proportionate selection the gene frequencies ps	x� t
 after selection are given
by

ps	x� t
 �
f	x

�f	t


p	x� t
�

Now we pair randomly between the selected parents and count how often genotype x
arises after uniform crossover� Taking x � 	�� �
 as an example� and computing the
probabilities of mating� we obtain

p	�� �� t� 
 � ps	�� �� t

�
ps	�� �� t
 � ps	�� � t
 � ps	� �� t
 �



�
ps	� � t


�

�


�
ps	�� � t
ps	� �� t


Using the fact that ps	�� �� t
�ps	�� � t
�ps	� �� t
�ps	� � t
 �  we obtain the theorem
for x � 	�� �
� The remaining equations are obtained in the same manner�
�

Equations � are formally identical to those known for diploid organisms in popu�
lation genetics 	Crow  Kimura � ���
� despite the fact that the underlying genetic
recombination is di�erent� Uniform crossover can thus be thought of as Mendelian re�
combination for haploid organisms� Obviously� the same equations are obtained for single
point crossover with crossover probability of ���� The di�erence equations have not yet
been analytically solved 	Nagylaki� ���
�
For the univariate marginal distributions p�	� t
 � p	� �� t
�p	� � t
 and p�	� t
 �

p	�� � t
 � p	� � t
 we obtain

p�	� t� 
 �
f	� �
p	� �� t
 � f	� 
p	� � t


�f	t

	��


p�	� t� 
 �
f	�� 
p	�� � t
 � f	� 
p	� � t


�f	t

� 	��


Here the term Ds has vanished� If the genotypes are in Robbins� proportions then we
get

p�	� t� 
 � p�	� t

f	� �
	 � p�	� t

 � f	� 
p�	� t


�f	t

	��


p�	� t� 
 � p�	� t

f	�� 
	 � p�	� t

 � f	� 
p�	� t


�f	t

� 	��


We will derive the equations for an arbitrary number of loci n in Section �� For two
loci we can compute an exact expression for realized heritability�





Theorem 	 The realized heritability b	t
 for uniform crossover is given by

b	t
 �  � 
�
	f	�� �
 � f	�� 
 � f	� �
 � f	� 



Ds	t

�f	t
V 	t


� 	��


Proof� By summation we obtain

R	t
 � �f 	t� 
 � �f	t


�
V 	t

�f 	t


� 
�
	f	�� �
 � f	� 
 � f	�� 
 � f	� �



Ds	t

�f 	t
�

�

�
 � 

�
	f	�� �
 � f	�� 
 � f	� �
 � f	� 



Ds	t

�f	t
V 	t


�
S	t


� b	t
S	t
�

Here we used the equation S	t
 � V 	t
� �f	t
 	M�uhlenbein et al� ���
�
�

We will return to these equations in Section �� Note that Ds	t
 � � if
p	�� �� t
p	� � t
 � p	�� � t
p	� �� t
 and f	�� �
f	� 
 � f	�� 
f	� �
� The �rst con�
dition is the mathematical de�nition of linkage equilibrium in population genetics� We
will soon show that linkage equilibrium is identical to the genotypes being in Robbins�
proportions�
Realized heritability is  for the additive case f	�� �
 � f	� 
 � f	�� 
 � f	� �
�

Realized heritability is also  for the multiplicative case f	�� �
f	� 
 � f	�� 
f	� �
 if
the initial population is in linkage equilibrium� But in general� uniform crossover after
selection leads to di�cult systems of di�erence equations" the genetic population moves
away from linkage equilibrium�
The assumption of linkage equilibrium is not as severe as one might think� The

next theorem shows that without selection� the gene frequencies of a population mating
randomly will converge to linkage equilibrium� This means that linkage equilibrium can
be considered to be the limit distribution of any genetic recombination scheme applied
without selection�

Theorem 
 Let D	t
 � p	�� �� t
p	� � t
 � p	�� � t
p	� �� t

 If there is no selection
then

D	t
 � 	�
jxj�	p	x� t
� p�	x�� �
p�	x�� �

� 	��


Furthermore the factor D	t
 is halved each generation

D	t� 
 �


�
D	t
� 	��


Proof� Without selection the univariate marginal frequencies are independent of t�
because for an in�nite population a recombination operator based on the Mendelian
chance model does not change them� Then from

p	� � t
� p�	� �
p�	� �
 � p	� � t
 � 	p	� �� t
 � p	� � t

	p	�� � t
 � p	� � t



� p	� � t
 � p	�� � t
p	� �� t
 � p	� � t
	 � p	�� �� t



we obtain
D	t
 � p	� � t
 � p�	� �
p�	� �
�

�



This gives Equation �� for x � 	� 
� The other cases are proven in the same way�
Without selection we have from Equation �

p	x� t� 
 � p	x� t
 � 	�
jxj���
�
D	t
� 	��


By computing D	t�
 Equation �� is obtained�
�

We will use as a measure for the deviation from Robbins� proportions the mean square
error DSQ	t


DSQ	t
 �
X
x

	p	x� t
� p�	x�
p�	x�


� � 	�


From the above Theorem we obtain

Corollary� For two loci we have

DSQ	t� 
 �


�
DSQ	t


The genotype frequencies p	x� t
 converge to Robbins� proportions for t��


The limit distribution for an arbitrary number of loci will be investigated in the next
section�

� Recombination without selection

The problem of determining the limit distribution was solved by Geiringer 	���
� She
considered diploid organisms� where the genes may be linked 	in modern genetics terms�
the genes may be on the same chromosome
� The classical Mendel�s laws are valid for
genes of di�erent chromosomes � unlinked genes � only�

Theorem � �Geiringer The limit distribution is the product of the n univariate
marginal distributions pi	xi
� which are derived from p	x� �
� the distribution of gametes
in the initial population


Note that the limit distribution is independent of the speci�c recombination method
used� The special case� assuming no linkage between genes� was already solved by Tietze
	���
 in a very interesting� but rather involved paper� The proof by Geiringer is simpler
and shorter� but still very sophisticated�
A rather informal proof of Geiringer�s theorem for haploid organism was done by

Holland 	���
� We will concentrate on the speed of convergence to Robbins� proportions
by numerical simulations� For more than � loci� the equations for uniform crossover and
one�point crossover are di�erent� Uniform crossover should convergence faster� because
it mixes the genes much more than one�point crossover� Table � gives numerical results
for n � � loci�
It is very di�cult to obtain empirical laws from our simulations because of the

stochastic �uctuations in a �nite population� This is demonstrated by Table �� There
the numerical value for DSQ	t
 is shown for di�erent population sizes� In addition
c � DSQ	t�
�DSQ	t
 is displayed� From Theorem � a factor of c � ���� is expected�

�
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Table �� Comparison of convergence to Robbins� proportions for n � � loci� onepoint
	upper half
 and uniform crossover� q� � p	�� � � � � �
� q� � p	�� � � � � 
� q� � p	�� � � � � � �
�
population size N � ���� averages over �� runs�

N � �


 N � �



 N � 





t DSQ c DSQ c DSQ c
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Table �� Convergence to linkage equilibrium for n�� loci

The numerical simulations show that �nite populations behave as expected for a short
time only� For a population of N � ��� the minimumdeviation DSQmin from Robbins�
proportions is already achieved after four generations� then DSQ slowly increases due
to stochastic �uctuations by genetic drift� Ultimately the population will consist of one
genotype only� Genetic drift has been analyzed by Asoh  M�uhlenbein 	���b
� It will
not be considered here�
Table � shows the value of c for larger values of n� We see that the reduction factor c

decreases for increasing n in generations � and �� We will derive this result analytically�
The analysis is valid for N � �n and n 	 �� Let qi denote the frequency of genotype x�
where i is the integer representation of the binary string x�

Theorem � The minimal deviation DSQmin from Robbins� proportions is given for
N � �n and n 	 � by

DSQmin �


N
� ��n 	��


�



n

t � � � ��

� 
�� 
�� 
�� 
��
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Table �� Reduction factor c averaged over �� runs� N � ����� uniform crossover

Proof� For N � �n we have at equilibrium about N di�erent genotypes� �n � N
genotypes are not represented in the population� Therefore

DSQmin � N	


N
� ��n
� � 	�n �N
	� � ��n
�

�


N
� ��n

�

Next we explain why c is decreasing for generation � with increasing n�

Lemma� For N � �n and starting with q� � q�n�� � ��� we have at generation �

q� � 

�
qi � � � � i � �n � 

q�n�� � 

�

This gives DSQ	
 � �
	
and c	
 � �

�

 In generation � we have for n 	 �

q� � 

�

q�n�� � 

�
�

This gives approximately DSQ	�
 � �
��	 and c	�
 � �

�
�

Proof� We compute the probability that in generation  genotype q� is obtained� The
genotype appears as a result of mating between q� and q� and q� with q�n��� This gives
the probability

q� �


�
	 
�
� �



�
��n � 

�
The same probability is obtained for q�n��� Furthermore�

qi � �


�
��n � ��n�� � � � � i � �n � �

A similar computation can be done for the second generation� We obtain for n 	 �
approximately q� � q�n�� � �

�

�

�

�



Remark� For the limit n � �� N � �n� we conjecture using the same arguments as
in the above proof DSQ	
 � ���� DSQ	�
 � ���� DSQ	�
 � ����� DSQ	�
 � ����

etc� This shows how fast uniform crossover is moving into the direction of Robbins�
proportions�
We now summarize the results of the simulation and the theoretical analysis� A

�nite population normally will not exactly reach Robbins� proportions� It will remain at
a minimal distance of DSQmin� The number of steps to reach DSQmin depends mainly
on N � It is for N � �n almost independent of n� In all simulations with n 	 � the
deviation from Robbins� proportions was less than # after � generations� This strongly
supports to analyze genetic algorithms by assuming Robbins� proportions�
The work of Geiringer was recently rediscovered by Booker 	���
� He wrote�

�Geiringer�s convergence results suggest that the most important di�erence among re�
combination operators is the rate at which they converge to equilibrium in the absence
of selection�� We will later show that it is di�cult to extrapolate recombination re�
sults without selection to results with selection� The really astonishing result is that
without selection all reasonable two�parent recombination methods converge to the same
equilibrium � given by Robbins� proportions
 This means that any given distribution of
�n genotype frequencies will converge to a distribution de�ned by n variables only � the
univariate marginal distributions�
Therfore we conclude that the theorem supports concentrating the theoretical anal�

ysis to gene frequencies being in Robbins� proportions� Given our numerical results
we conjecture that all two�parent recombination operators create genotype frequencies
which are �uctuations around the trajectory given by Robbin�s proportions�
We show in the next section that all two�parent recombination operators give the

same univariate gene frequencies� even after one step of selection�

	 Di
erence equations for univariate marginal fre�

quencies

The di�erence equations for genotype frequencies soon get complicated if the number of
loci increases� They can only be obtained by a computer program� A nice calculus for
computing these equations has been developed by Vose and Wright 	���
� though these
equations are too detailed for our purposes� They describe the evolution of all possible
genotypes� which means that for n � � there are ����� independent variables$
The following theorem gives the di�erence equations for the univariate marginal fre�

quencies�

Theorem � For proportionate selection the univariate marginal frequencies are deter�
mined by

pi	v� t� 
 �
X

xjxi�v

p	x� t
f	x

�f	t


� 	��


This equation is valid for any recombination�crossover scheme based on the Mendelian
chance model


�



Proof� After selection the univariate marginal frequencies are given by

psi 	v� t
 �
X

xjxi�v

ps	x� t
 �
X

xjxi�v

p	x� t
f	x

�f	t


�

Now the selected individuals are randomly paired� Since Mendelian recombination does
not change the allele frequencies� these operators do not change the univariate marginal
frequencies� Therefore

pi	v� t� 
 � psi 	v� t
�

�

This result is very important� For n � � we have already proven it with Equation
��� A number of conclusions can be derived�
Let Hi	v
 � 		� � � � � 	� v� 	� � � � � 	
 be a �rst�order schema at locus i� This schema

includes all strings where the gene at locus i is �xed at v� Then the �tness of the schema
at generation t is given by 	Holland� ���
�

f	Hi	v
� t
 �


pi	v� t


X
xjxi�v

p	x� t
f	x
 	��


Our univariate marginal frequency pi	v� t
 is obviously identical to the frequency of
schema Hi� From Theorem � we obtain�

Corollary �First�order schema theorem� For a genetic algorithm with proportion�
ate selection using any Mendelian recombination the frequency of �rst�order schemata
changes according to

pi	v� t� 
 � pi	v� t

f	Hi	v
� t

�f 	t
�

	��


Note that the above corollary is valid for an in�nite population with proportionate
selection and recombination� Holland�s famous schema theorem 	���
 implies for �rst
order schemata 	schema de�ning length of �


pi	v� t� 
 
 pi	v� t

f	Hi	v
� t


�f	t

�

Theorems using univariate marginal distributions are of limited use for prediction�
They can only make single�step predictions� The computation of f	Hi� t
 and �f 	t
 needed
for Equation �� requires all genotype frequencies p	x� t
� The next corollary directly fol�
lows from Theorem ��

Corollary� If p�	x
 is a �xed point of a genetic algorithm with proportionate selection�
then

�f� � f�	Hi	v

 i � � � � � � n 	��


A necessary condition for a �xed point is that the �tness of all �rst order schemata is
equal to the average �tness


The above condition is necessary� but not su�cient for a �xed point� The following
example shows this� Let the �tness function be de�ned as f	�� �
 � f	� 
 � �� f	� �
 �
f	�� 
 � � Then for identical genotype frequencies p	x
 � �� the condition is ful�lled�
but p	x
 is not a �xed point for uniform crossover�

�



If the genotype frequencies are in Robbins� proportions� an expression using only
univariate marginal distributions can be given� The corollary immediately follows from
Theorem ��

Corollary� Let the genotype frequencies be in Robbins� proportions
 Then for any
genetic algorithm with proportionate selection the univariate marginal frequencies obey
the dierence equation

pi	v� t� 
 � pi	v� t

�fi	v� t

�f 	t


� 	��


where

�fi	v� t
 �
X

xjxi�v

f	x

nY
j��
j ��i

pj	xj� t
� 	��


The di�erence equation 	��
 can also be written in the form

pi	v� t� 
 � pi	v� t
 � pi	v� t

Fi	v� t

�f	t


� 	��


where
Fi	v� t
 � �fi	v� t
� �f	t
� 	��


The expression Fi	v� t
 was introduced by Asoh and M�uhlenbein 	���a
� but was de�
noted fi�	v� t
� These values minimize

X
x

p	x� t


�
f	x
� �f 	t
�

nX
i��

gi	xi� t


��

�

for varying gi	xi� t
�
Pn

i�� Fi	xi� t
 is the best additive approximation to f	x
� �f	t
� The
expressions are used to de�ne the additive genetic variance VA	t
� which was introduced
brie�y in Section ��

VA	t
 �
nX
i��

LX
v��

pi	v� t
 	Fi	v� t


� � 	�


Note that in general a genetic algorithm is not fully described by the n univariate
marginal distributions� Even if the genotype frequencies are in Robbins� proportions�
they will in general be in linkage disequilibrium after one step of selection�
We are now ready to prove the main theorem� which is related to Fisher�s Funda�

mental Theorem of Natural Selection 	Fisher� ���
� It is the exact RS equation for
proportionate selection�

Theorem � Let the genotype frequencies be in Robbins� proportions
 Then for any
genetic algorithm with proportionate selection the response to selection is given by

R	t
 �
VA	t

�f	t


�
X
x

%p	x


�
f	x
� �f	t
�

nX
i��

Fi	xi� t


�
	��


where %p	x
 � p	x� t� 
� p	x� t



�



Proof� We have
P
x%p	x
f	x
 � R	t
 and

P
x%p	x
 � �� Let %pi	v
 � pi	v� t� 
�

pi	v� t
� Then

X
x

%p	x

nX
i��

Fi	xi� t
 �
nX
i��

LX
v��

Fi	v� t

X

xjxi�v

%p	x


�
nX
i��

LX
v��

Fi	v� t
%pi	v


�
nX
i��

LX
v��

pi	v� t
F
�
i 	v� t
�

�f	t


�
VA	t

�f	t


Summing up all terms gives the response equation� We used that for Robbins� propor�
tions

P
xjxi�v%p	x
 � %pi	v� t
� Furthermore Equation �� was inserted�

�

For a genetic algorithm with two�parent recombination TPR the theorem can be
used for one step only� because the genotype frequencies will not remain in Robbins�
proportions�
Fisher 	���
 stated his theorem as follows� �The rate of increase in �tness of any

organisms at any time is equal to its genetic variance in �tness at that time�� or mathe�
matically R	t
 � VA	t
� Fisher assumed continuous generations� which leads to di�eren�
tial equations instead of di�erence equations� For discrete generations the corresponding
expression would be R	t
 � VA	t
� �f	t
� This is just the �rst factor of Equation ���
The second term is of second order� because it is a summation of a product of the
changes of the genotype frequencies times the error between f	x
 and its best additive
approximation� The theorem indicates that Fisher�s theorem is approximately correct�
By neglecting the sum in Equation �� we obtain�

Corollary� Let the genotype frequencies be in Robbins� proportions
 Then the realized
heritability can be estimated by

b	t
 � h�	t
 �
VA	t


V 	t

� 	��


The estimate is valid for any genetic algorithm with proportionate selection


Proof�

R	t
 � VA	t

�f	t


�
VA	t


V 	t


V 	t

�f	t


�
VA	t


V 	t

S	t


�

It is known in population genetics that Fisher�s theorem is mathematically false�
There are even counterexamples with R	t
 � �� In these counterexamples the population
is not in linkage equilibrium� But the biological interpretation of Fisher�s conjecture is
still open� Can it be that in nature we only �nd �tness functions where Fisher�s theorem
is valid! Second� how important is linkage disequilibrium in natural populations! For a
recent discussion of Fisher�s theorem in population genetics the interested reader should
consult Ewens 	���� ���� ���
�

�



A di�erent expression for R	t
 has been given by Altenberg 	���
� Altenberg derived
a general formula for any kind of recombination scheme� But even if linkage equilibrium
is assumed� Altenberg�s formula is very di�cult to apply for a given �tness function�
There have been other approaches to obtain a more precise equation for the response�

The most promising approach seems to extend the equation for the response to selection
to a set of equations using higher order moments or cumulants� First steps into this
direction have been made by Pr�ugel�Bennet and Shapiro 	���
 and Rattray 	���
�
They have been able to compute the cumulants for quadratic �tness functions using con�
cepts of statistical mechanics� In population genetics Bulmer 	���
 already introduced
cumulants� His work was extended by Turelli and Barton 	���
�
The application of Theorem � to a genetic algorithms with two�parent recombination

is limited� Therefore we introduce in the next section an algorithm� that keeps the
population in Robbins� proportions� This algorithm is completely de�ned by univariate
marginal frequencies�

� Univariate marginal distribution algorithm

There is a simple recombination scheme that maintains the population in Robbins� pro�
portions" we call it gene�pool recombination �GPR	 	M�uhlenbein  Voigt� ���
� In
GPR� the two alleles to be recombined at each locus are chosen independently from the
gene�pool de�ned by the selected parent population� The biologically inspired idea of
restricting recombination to the alleles of two�parents for each o�spring is abandoned�

De�nition� In gene�pool recombination the two �parent� alleles of an ospring are
randomly chosen for each locus with replacement from the gene�pool given by the selected
parents
 The ospring allele is then computed using any of the standard recombination
schemes for two�parent recombination�

For binary functions the bit�based simulated crossover 	BSC
 of Syswerda 	���
 is
similar to GPR� However� his implementation merges selection and recombination� An
implementation of BSC that separates selection and recombination was empirically in�
vestigated by Eshelman and Scha�er 	���
� GPR is a generalization of BSC" it can
be used for any representation � discrete or continuous� For a discussion of gene�pool
recombination and its analysis� see M�uhlenbein and Voigt 	���
� Gene�pool recombi�
nation leads to di�erence equations for the univariate marginal frequencies pi	v
� Here
we generalize this idea and de�ne a conceptual algorithm that does not recombine chro�
mosomes but uses univariate marginal frequencies instead�
The general form of the Univariate Marginal Distribution Algorithm 	UMDA
 is as

follows�

UMDA

� STEP �� Set t� � Generate N  � points randomly�

� STEP �� Select M � N points according to a selection method� Compute the
marginal frequencies ri	xi� t
 of the selected set�

� STEP �� Generate N new points according to the distribution p	x� t � 
 �Qn
i�� ri	xi� t
� Set t� t� �

��



� STEP �� If termination criteria are not met� go to STEP �

From Equation �� it follows�

Corollary� For proportionate selection� the UMDA stays in equilibrium i VA � �


The response to selection is zero if the additive variance is zero� UMDA only exploits
the additive genetic variance�
The corollary implies UMDA is not a global optimization method for highly non�

linear functions characterized by a signi�cant V� contribution 	see Equation �
 and a
small VA contribution� since evolution stops if VA � �� This limitation has already been
shown by simulation for the case of gene�pool recombination by M�uhlenbein and Voigt
	���
� For UMD algorithms the response is zero i the additive genetic variance VA is
zero

We have been able to prove a weak form of Fisher�s theorem by using an inequality

from Baum and Eagon 	���
�

Theorem �� For UMDA we have R	t
 	 � unless all univariate marginal frequencies
remain the same


The Theorem is proven in Appendix �
We have not been able to extend Theorem � to populations which are in linkage dise�

quilibrium� In the next Section we will in detail compare UMDA with genetic algorithms
using two�parent recombination for the case of just two loci�

� The exact response equation for two loci

In order to investigate Fisher�s fundamental theorem rigorously� we will compute in this
section exact equations for the response� We assume proportionate selection� linkage
equilibrium and for notational convenience binary genes� The computation for two loci
is already very tedious� indicating that an exact analysis for three loci by this method
would be di�cult�

Theorem �� Let the �tness be given by f	�� �
 � f�� f	� �
 � f	�� 
 � f�� f	� 
 � f�

Let the genotype frequencies at generation t be given by p	�� �� t
 � 	 � p
��p	�� � t
 �
p	� �� t
 � p 	 	 � p
�p	� � t
 � p�
 Then for uniform crossover the response is given
by

R	t
 �
VA	t
 �

�
�V�	t


�f 	t

� p	 � p
	f� � �f� � f�


VA
� �f	t
�

� 	��


Proof� From the de�nitions we get

V � p�f�� � �p	 � p
f�� � 	 � p
�f�� � �f 	t
�

VA � �
�
pF �

� 	� t
 � 	� p
F �
� 	�� t


�
� �p

�
	� p
f� � pf� � �f	t


��
� �	 � p


�
pf� � 	� p
f� � �f	t



��
�

The computation is straightforward� but tedious� Therefore we show some important
intermediate steps� We start with

�



V � VA � p�f�� � �p	 � p
f�� � 	 � p
�f�� � �f	t
�

��p	 � p
�f�� � �p�f�� � �p�	 � p
f�f� � �p	 � p
f� �f	t
 � �p
�f� �f 	t


��	 � p
p�f�� � �	 � p
�f�� � � �f 	t
�
��	 � p
�pf�f� � �	 � p
pf� �f 	t
 � �	 � p
�f� �f	t
�

Collecting all terms with �f	t
 we obtain

V � VA � p�f�� � �p	 � p
f�� � 	 � p
�f�� �
�f	t
�

��	 � p
p�f�� � �	 � p
�f�� � �p	 � p
�f��
��p�f�� � �p�	� p
f�f��

Combining all coe�cients we obtain the expression

V� � V � VA � p�	� p
�	f� � �f� � f�

�� 	��


We now use the expression of R	t
 derived in Theorem �� In the special case considered
here� the term Ds	t
 is just

Ds	t
 � p�	 � p
�	f�f� � f�� 
�

Therefore

R	t
 �
VA	t
 � V�	t


�f	t

� 
�

p�	� p
�

�f 	t
�
	f� � �f� � f�
	f�f� � f�� 
�

Inserting V� into this equation gives

R	t
 �
VA	t
 �

�
�V�	t


�f 	t

�


�
p�	 � p
�

f� � �f� � f�
�f	t


�
f� � �f� � f� � f�f� � f��

�f 	t


�
�

After some computation we obtain

	f� � �f� � f�
 �f 	t
� f�f� � f�� � 	pf� � 	� �p
f� � 	 � p
f�

� �

We note that VA can be written as

VA � �p	 � p
 	pf� � 	 � �p
f� � 	� p
f�

� 	��


Inserting VA into the above equation completes the proof�
�

Using the decomposition from Theorem  we obtain

Corollary� �Robertson�s�Price�s Theorem Under the assumptions of Theorem ��
the response is given for uniform crossover by

R	t
 � �
cov	Fmp	t
� Fo	t



�f	t

� p	 � p
	f� � �f� � f�


VA

� �f 	t
�
� 	��


��



The approximation

R	t
 � �cov	Fmp	t
� Fo	t

�f	t


is called Robertson�s or Price�s version of Fisher�s theorem 	Lynch  Walsh� ���"Al�
tenberg� ���
� We have derived the exact equation for two loci� It is not easy to
decide whether the second term is small compared to the �rst term� But it follows that
for uniform crossover the regression coe�cient is a more accurate estimate for realized
heritability than VA�V � Especially it follows that if VA � �� the response is exactly
V��	� �f 	t

�
It has to be noted that an equation very similar to Equation �� has been proven by

Nagylaki 	��
 for diploid organism and one locus� The reader should consult Nagy�
laki	��
 and Lynch  Walsh	���
 if he is interested how researchers in quantitative
genetics tried to compute an exact response equation�
Next we derive the exact response equation for UMD algorithms�

Theorem �� Under the assumptions of Theorem �� the response for UMD algorithms
is given by

R	t
 �
VA	t

�f	t


� p	 � p

	f� � �f� � f�

VA	t


� �f 	t
�
	��


Proof� The di�erence equation for the univariate marginal frequency is given by

p	t � 
 � p	t

	� p	t

f� � pf�

�f	t


Inserting this expression into R	t� 
 � �f 	t� 
 � �f 	t
 gives the conjecture�
�

We now compare the two Theorems� Let

error	t
 � p	 � p
	f� � �f� � f�

VA	t


� �f 	t
�
�

Uniform crossover is an instance of two�parent recombination 	TPR
� Using this notation
we have shown

RTPR	t
 �
VA	t
 �

�
�V�	t


�f 	t

�


�
error	t
�

RUMDA	t
 �
VA	t

�f	t


� error	t
�

The structure of the response equation for TPR and for UMDA is very similar� The
error term for TPR is just one half of the error term for UMDA� In particular error � �
if VA � � or the function is linear 	f� � �f� � f� � �

We discuss the result with an example�

Example� f� � �� f� � � f� � �" p	�
 � ���
One computes �f	�
 � ���VA	�
 � �� V�	�
 � ����� error � �� The response is given
by R	�
 � V�	�
�	� �f 	�

 � ��� Equation �� exactly predicts the response� For TPR

��



the equilibrium is given by p	�� �
 � p	� 
 � ������� and p	�� 
 � p	� �
 � ��������
For UMDA p	�
 � ��� is an instable equilibrium�

In order to show the dependency of the genotype frequency dynamics from the �tness
function� we disturb the �tness values a tiny fraction 	f� � ���
�

t p�
�
� p�
��� p����� �f �t� V �t� VA�t� VA�t��V �t� R�t��S�t�
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Table �� f� � �� f� � � f� � ���� UMDA

In Table � the run is shown for UMDA� We observe that for about � generations the
average of the population and the variance remain almost the same� The additive genetic
variance is almost zero� therefore the response is very small� It takes UMDA some time to
move away from the equilibrium point� From generation � on the genotype frequencies
move quickly to the optimum�
In Table � data is presented for TPR�
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Table �� f� � �� f� � � f� � ���� TPR

We observe that TPR has a quick start� The �rst response is large� But TPR is
heading to the equilibrium de�ned by the �tness values f� � f� � �� It spins a long
time nearby this equilibrium before it moves to the optimum� In comparison� UMDA is
moving faster to the optimum than TPR despite its slow start�
We have many similar results obtained� This leads us to the conclusion� The dynam�

ics of TPR is more di�cult than that of UMDA
 But for two loci there is no indication
that TPR is more e�cient for optimization than GPR


��



In the next section we will derive an exact equation for the response for an arbitrary
number of loci n�

 The exact response equation for proportionate

selection

Equation �� is an exact expression for the response� The equation shows that the re�
sponse is strongly in�uenced by the additive genetic variance VA� But it is di�cult to
estimate the second term� the error� The error term is a summation over �n genotypes�
Furthermore %p	x
 is needed�
In this section we will derive an exact equation for the response by a di�erent method�

The equation is a generalization of the equation derived in the previous section� It uses
marginal frequencies only� The proof of the equation is based on the multivariate Taylor
expansion�
We recall that the average �tness of the population at generation t is given by

�f 	t
 �
X
x

p	x� t
f	x
�

where

p	x� t
 �
nY
i��

pi	xi� t
�

For notational convenience we consider binary genes xi � f�� g� Then we have
pi	� t
 � �pi	�� t
� We abbreviate pi	� t
 � pi	t
� If the dependency from t is obvious�
we just write pi� In order to explicitly formulate the dependency of the average from the
marginal frequencies pi� we write

W 	p�� � � � � pn� t
 � �f	t
� 	��


For a di�erentiable function g	p�� � � � � pn
 of n variables the multivariate Taylor ex�
pansion is given by

g	p
 � g	a
 �
nX
j��

	pj � aj


g


pj
j
p�a �



�$

�
	 nX
j��

	pj � aj





pj



A�

g j
p�a

�


�$

�
	 nX
j��

	pj � aj





pj



A
�

g j
p�a � ������ 	��


where p � 	p�� � � � � pn
� a � 	a�� � � � � an
 and the operators 
�
p are multiplied formally�
We are now ready to state the main Theorem�

Theorem �� For UMDA with proportionate selection the response to selection is given
by

R	t
 �
VA	t


W
�


�

X
i��j

pi	t
Fi	� t
pj	t
Fj	� t


W �


�W


pi
pj

�


�$

X
i��j�j ��k�i ��k

pi	t
Fi	� t
pj	t
Fj	� t
pk	t
Fk	� t


W �


�W


pi
pj
pk
� ���� 	�


��



Proof� We make a Taylor expansion with p � p	t � 
 and a � p	t
� Let %pi �
pi	t� 
 � pi	t
� We recall that

%pi � pi	t

Fi	� t


W

%pi � �	� pi	t


Fi	�� t


W

Noting that W has a special structure � each pi occurs only once in p	x� t
 � the Taylor
expansion immediately gives the expressions containing partial derivatives of order two
and higher� We are left to prove that the �rst term contains the additive genetic variance�
By simple manipulation we obtain

VA	t
 �
nX
i��

	� pi	t

Fi	�� t

� � pi	t
Fi	� t


�

�
nX
i��

	� pi	t

Fi	�� t
	�W %pi
� pi	t



 � pi	t
Fi	� t
W
%pi

pi	� t


� W
nX
i��

%pi	Fi	� t
� Fi	�� t



� W
nX
i��

%pi

W


pi
�

because obviously

W


pi
� Fi	� t
� Fi	�� t
�

Dividing the equation by W gives the Theorem�
�

Remark� Because Fi	� t
 � 	� pi	t

	Fi	� t
�Fi	�� t

 the dierence equation for the
univariate marginal frequencies can also be written

%pi � pi	t
	� pi	t


Fi	� t
� Fi	�� t


W
� 	��


Corollary� For two loci the response of UMDA is given by

R	t
 �
VA	t


W
�
p�	t
F�	� t
p�	t
F�	� t


W �
	f	� 
� f	� �
 � f	�� 
 � f	�� �

 	��


For the special case p� � p� � p� F� � F�� f	�� 
 � f	� �
 we have

R	t
 �
VA	t


W
� p	 � p


VA	t


�W �
	f	� 
� f	� �
 � f	�� 
 � f	��

� 	��


Proof� The �rst equation directly follows from Equation �� Only equation �� has to
be proven� In this special case we have

pF�	� t

� � 	 � p
F�	�� t


� � VA	t
���

From

F�	�� t

� �

p�F�	� t
�

	� p
�

��



we obtain

VA	t
�� � pF�	� t

� � p�

F�	� t

�

� p
�

p

� p
F�	� t


��

Therefore
p�F�	� t


� � p	 � p
VA	t
���

Noting that for the special case

p�	t
F�	� t
p�	t
F�	� t
 � p�F�	� t

�

we obtain the conjecture�
�

The corollary shows that for n � � Theorem � correctly gives the equation proven
in the previous section� But the proof using the Taylor expansion is much simpler� It
is interesting to compute the condition� under which the response is exactly given by
VA�W � Neglecting the trivial case that all Fi	� t
 � �� the necessary and su�cient
condition is

f	� 
 � f	� �
 � f	�� 
 � f	�� �
 � � 	��


It is easy to see that this equation is ful�lled if f is linear� In fact� only linear
functions satisfy the equation�
The above technique can be used to explicitly compute the error terms for an arbitrary

number of loci� This is left to further research� We just give the error terms for three
loci�

�� The response equation for three loci

It is instructive to explicitly compute the response equation for n � � loci� From Theo�
rem � the next corollary can easily be obtained�

Corollary� Let

�� � f	� � 
�f	� � �
�f	� �� 
�f 	�� � 
�f 	� �� �
�f 	�� � �
�f	�� �� 
�f	�� �� �
�
Then for three loci the response for UMDA is given by

R	t
 �
VA	t


W

�
p�	t
F�	� t
p�	t
F�	� t


W �
	f	�� � 
 � f	�� � �
 � f	�� �� 
 � f	�� �� �
 � p���


�
p�	t
F�	� t
p�	t
F�	� t


W �
	f	� � �
 � f	� �� �
 � f	�� � �
 � f	�� �� �
 � p���


�
p�	t
F�	� t
p�	t
F�	� t


W �
	f	� �� 
 � f	� �� �
 � f	�� �� 
 � f	�� �� �
 � p���


�
p�	t
F�	� t
p�	t
F�	� t
p�	t
F�	� t


W �
�� 	��


Proof� The proof is straightforward� One just computes the partial derivatives of
W �
�

��



We are now able to compute the conditions under which R	t
 � VA�W � Neglecting
the trivial case that all Fi	� t
 � � we obtain the four equations

� � f	�� � 
 � f	�� � �
 � f	�� �� 
 � f	�� �� �
 	��


� � f	� � �
 � f	� �� �
 � f	�� � �
 � f	�� �� �
 	��


� � f	� �� 
 � f	� �� �
 � f	�� �� 
 � f	�� �� �
 	��


� � �� 	��


The �rst three equations are similar to Equation ��� One has to �x the allele of one
of the three loci to �� then the remaining four �tness values have to ful�ll the equation
for two loci� If f is a linear function� all four equations are satis�ed� In fact� only
linear functions ful�ll the equations� We skip the prove and just count the number of
independent variables� For n � � loci we have eight �tness values and four equations�
This gives four independent variables� These are necessary and su�cient to specify a
linear function of three variables�
We have not been able to compute the exact equation for the response of two�parent

recombination 	TPR
� The eight di�erence equations which describe the evolution of the
genotypes of TPR are very long� In order to make a comparison of UMDA and TPR we
implemented the di�erence equations for uniform crossover and made many numerical
experiments� The results of the experiments suggest the following conjecture�

Conjecture� If the �tness function ful�lls Equations ����� and if the genotypes are in
Robbins� proportions� then for a genetic algorithm with uniform crossover the response
is given by

R	t
 �
VA	t


W

We have proven the conjecture for two loci in Section �� The conjecture indicates
that the structure of the response equation for TPR and UMDA is fairly similar� if
genotypes are in Robbins� proportions� We discuss the conjecture and the problem of
Robbins� proportions with a numerical example� For notational convenience we sort the
genotypes according to their integer value�

Example� Let the �tness function be de�ned by the values 	�� �� �� �� �� �� �� �
� It is a
linear function� Simulation results for TPR and UMDA are given in Table ��
For this �tness function the di�erence between TPR and UMDA is very small� For
TPR the linkage disequilibrium term DSQ increases for two generations� at the end it
decreases by a factor of � each generation� The average of the �tness is very similar�
Similar results can be obtained for other �tness functions which ful�ll Equations ������
In Table � we investigate linkage disequilibrium with selection and without selection�

The �tness function for selection is as before� The initial genotype frequencies have been
set to p	�� �� �
 � ����� all other frequencies have been set to �����
Without selection linkage disequilibrium DSQ is reduced approximately by a factor

of � each generation� With selection� the reduction of DSQ is irregular� Nevertheless
DSQ is almost the same in both cases up to generation �� This is the more surprising
as the genotype frequencies are already very di�erent at generation �� Note that TPR
without selection has a �xed point at about p	�� �� �
 � ���� as predicted by Geiringer�s
theorem�

��
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Table �� Gene frequencies for UMDA	top
 and TPR 	bottom


Selection No selection
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Table �� Linkage disequilibrium with selection and without selection

In the next section we discuss the di�erences and similarities of genetic algorithms
using TPR with UMD algorithms�

�� Two�parent recombination vs� gene�pool re�

combination

The relationship between TPR algorithms and UMD algorithms is very intricate� But
we see more similarities than di�erences� We conjecture that the class of �tness function
which both algorithms e�ciently can solve is very similar� The same is true for the class
of �tness functions they are not able to solve�
Let us summarize the results obtained so far� For UMDA algorithms we have proven

	Theorem �


RUMDA	t
 �
VA	t

�f	t


� error	t
�

��



For TPR a corresponding equation could be obtained for n � � loci only�

RTPR	t
 � �
cov	Fmp	t
� Fo	t



�f	t

�


�
error	t


The approximate equation

RTPR	t
 � �cov	Fmp	t
� Fo	t

�f 	t


is called Robertson�s or Price�s Theorem� This approximation can be proven for general n
under the assumption that the regression coe�cient of the �tness of the selected parents
is almost identical to that obtained without selection 	M�uhlenbein et al� 	���

� This
assumption is di�cult to verify for a given �tness function�
For genotypes in Robbins� proportions Fisher�s variance decomposition can be proven

cov	Fmp	t
� Fo	t

 �


�
VA	t
 �



�
V�	t
 � � � ��



�n
Vn	t
�

Taking these results together we can state that for genetic populations in Robbins�
proportions both TPR and UMDAmainly depend on the additive genetic variance VA	t
�
The di�erence between TPR and UMDA is small� The question remains open how
important linkage disequilibrium is for TPR� The theorem of Geiringer and our numerical
results indicate that for many �tness functions linkage disequilibrium will be small and
be not important�
The dependency on the genotype frequencies makes an interpretation of VA	t
 di��

cult� It is wrong to assume that UMDA can solve only linear �tness functions� It can
solve very di�cult nonlinear functions if there is always a reasonable VA	t
 contribution
in the variance V	t
� The same is true for TPR� But both algorithms fail in optimizing
�tness functions which have a small VA	t
 contribution� This means that the �tness
functions are mainly determined by nonlinear gene interactions�
We give additional empirical evidence for this conjecture� The di�erent sampling

strategies of single�point crossover� uniform crossover and gene�pool recombination can
informally be characterized as follows� Selection is used to de�ne a population of strings
to be used for recombination� If a gene is �xed at a locus� then this gene remains
�xed� Recombination&crossover is only sampling the subspace where the alleles of the
strings di�er� Gene�pool recombination samples this space according to the product of
the univariate marginal distributions� Uniform crossover is doing almost the same� but
the sampling is biased by the strings contained in the population� Single�point crossover
samples a subset of the points sampled by uniform crossover� It is very di�cult to
describe these sampling strategies formally�
There have been a number of theoretical studies to understand crossover in genetic

algorithms� In the analysis of De Jong and Spears 	���
 disruption 	probability of de�
stroying higher order schemata
 as well as recombination potential 	probability of creat�
ing a higher order schema when the parents contain the necessary lower order schemata

are computed� The authors support evidence that uniform crossover has a higher recom�
bination potential than the other crossover operators� In principle it is possible to use a
speci�c recombination method where the recombination bias matches the nonlinear gene
dependencies� But if the bias does not match� the result gets worth than with uniform
crossover� So uniform crossover is widely used� But in Section � we have shown that

��



uniform crossover is moving the genotype frequencies very fast to Robbins� proportions�
This means that a genetic algorithm with uniform crossover behaves very similar to
UMD algorithms�
From the empirical studies of recombination operators� we will only discuss Eshelman

and Scha�er 	���
 because their empirical �ndings are backing up our theory� Eshel�
mann and Scha�er de�ne two sampling biases� recombinative bias and schema bias�
Recombinative bias is the expected proportion of di�ering bits that a recombination op�
erator copies to a child from its furthest parent 	in terms of Hamming distance
� Schema
bias is de�ned as follows� a recombination operator has no schema bias if all schemata
of the same order are equally likely to be disrupted in a single mating�
A large recombinative bias creates a large standard deviation in the �tness of the

o�spring� Recombinative bias is related to the standard deviation of o�spring�s �tness�
Schema bias cannot be related to a concept introduced in this paper�
Single�point crossover has weak recombinative bias and strong schema bias� Uniform

crossover and HUX� which swaps exactly half of the di�ering bits� have strong recom�
binative biases and weak schema biases� For a fairly large set of problems� Eshelman
and Scha�er show empirically that HUX is the best performer and that single�point
and two�point crossover only perform well on the very arti�cial �needles on a plateau�
problem� This result is valid if a single recombination operator is used� Eshelman and
Scha�er suggest using a mechanism to switch between operators based on the progress
of the search� although no such mechanisms is likely to be ideal�
In summary� Recombination operators dier in their search biases
 All numerical

results obtained so far indicate that a high recombinative bias is necessary for a good
search and this is achieved by an algorithm that uses only univariate marginal frequencies

No numerical or theoretical evidence has been provided that two�parent recombination
detects and explores useful gene interactions in a systematic way


�� Analysis of binary tournament selection

The exact response equations 	Theorems � and �
 have been derived under the as�
sumption of proportionate selection� From these equations the approximate breeders�
equation 	�
 can be derived by using I � V ���� �f 	t
 	M�uhlenbein et al� 	���

� Now
we investigate whether the breeders� equation � is also a good approximation for other
selection schemes� In quantitative genetics this is taken for granted�
Numerical experiments with the Breeder Genetic Algorithm BGA suggest that Equa�

tion � can indeed be used for truncation selection� But the numerical experiments have
also revealed that for binary tournament selection this approximation can give a poor
estimate� In this section we will explain why this is the case�
In order to keep the analysis simple� we �rst consider binary �tness functions of class

unitation� where the �tness values are equal for all chromosomes having the same number
of �s� Let h	x
 �

Pn
i�� xi� Then f	x
 � g	h	x

� Furthermore� we assume that the

univariate marginal distributions pi of all loci are equal in the initial population�

p�	
 � p�	
 � � � � � pn	
 � p� 	�


Then a genotype x with k �s is contained in the initial population with probability

p	x
 � pk	� p
n�k �

�



Theorem �	 Let the �tness values obey the relation

g	�
 � g	
 � � � � � g	n
 	��


where g	i
 denotes the �tness of a genotype with i �s
 Let p be the univariate marginal
frequency at generation t
 Then the marginal frequency p� of an UMD algorithm at
generation t�  is given by

p� � p� p	 � p


�
	� nX

k��

k��X
j��

�
n� 
k � 

��
n

j

�
pk�j��	 � p
�n�k�j��

�
n��X
k��

�
n � 
k � 

��
n

k

�
p�k��	� p
�n��k�� �

�n��X
j��

pj



A 	��


Proof� The frequency Pk of a speci�c genotype with k �s is given by

Pk � pk	� p
n�k�

There are
�
n
k

�
di�erent genotypes with k �s� In a binary tournament� Pk wins all

tournaments with Pj � j � k� There is a draw if Pk meets another genotype with k �s�
In this case the winner is randomly determined� Therefore on the average Pk wins half
of these tournaments� Furthermore� Pk will be the winner of a tournament with itself�
The frequency P s

k after all tournaments have been done is given by�

P s
k �

�
	� k��X

j��

�
n

j

�
Pj �

�
n

k

�
Pk



APk� 	��


From P s
k we can compute the univariate marginal frequency p

s by summing up all ap�
propriate genotypes� e�g�� all genotypes having allele  at locus � This gives

ps �
nX
k��

�
n � 
k � 

�
P s
k �

This equation can be easily understood� We just explain it for n � � loci� In this
case the four genotypes 	� �� �
� 	� �� 
� 	� � �
� 	� � 
 have to be summed� giving one
genotype with a single � two genotypes with two �s and one genotype with three �s�
In order to keep the population in linkage equilibrium we have to set

p� � ps�

This gives equation 	��
�
�

Remark� If tournament selection is used� all �tness functions obeying the relation 	��

will lead to the same evolution of the univariate marginal distribution� The absolute
�tness values do not have any in�uence" only the order relation is important for tourna�
ment selection� The linear function ONEMAX	n
� de�ned by g	i
 � i� obeys the order
relation in Equation ��� Therefore� the evolution of the gene frequencies is equal to the
ONEMAX	n
 dynamics for all functions of this class�

��



For ONEMAX	n
 we obtain from equation 	��
 using Rn	t
 � np� � np

Rn	t
 � np	 � p


�
	� nX

k��

k��X
j��

�
n� 
k � 

��
n

j

�
pk�j��	� p
�n�k�j��

�
n��X
k��

�
n� 
k � 

��
n

k

�
p�k��	� p
�n��k�� �

�n��X
j��

pj



A 	��


Corollary� For ONEMAX	�
 we have

p� � p� p	 � p
	 � p� p�
�

R�	t
 � �p	 � p
	 � p � p�
 	��


For ONEMAX	�
 we obtain

p� � p � p	 � p
	 � �p � �p� � �p� � �p�
�
R�	t
 � �p	 � p
	 � �p � �p� � �p� � �p�
� 	��


In order to compute realized heritability� we need an estimate of the selection dif�
ferential S	t
 � �fs	t
 � �f 	t
� This has been done for binary tournament selection and
the function ONEMAX already in Section �� From Equations �� and �� we observe
that R	t
 � S	t
� This means that realized heritability is  for n � �� � as expected�
Note that for proportionate selection it follows from Fisher�s theorem � that realized
heritability is one for any linear functions� For tournament selection the proof that the
realized heritability is one for ONEMAX� is elementary but lengthy� We recall from
Section � that for binary tournament selection

Sn	t
 �
n��X
i��

	�D�	i

� np� where 	��


D	i
 �
iX

j��

�
n

j

�
pj	 � p
n�j � 	��


Theorem �
 For ONEMAX	n
 the realized heritability of the univariate marginal dis�
tribution algorithm with binary tournament is equal to �� i
e


Rn	t
 � Sn	t


The proof is given in Appendix ��
It is di�cult to solve Equation �� analytically� But we can solve it approximately by
using selection intensity� Recall from Section � that S	t
 � I��	p	t



Corollary� Under the assumptions of Theorem �� the univariate marginal frequency p
is approximately given by the dierence equation

p� � p �
I�
n

q
np	 � p
 	��


The solution of this equation is given by

p	t
 � ���

�
 � sin

�
I�p
n
t� arcsin 	�p	�
 � 
�

��
	�


��



Proof� For ONEMAX we have �	p
 �
q
np	 � p
 for UMD algorithms� This gives

the RS equation

Rn	t
 � I�
q
np	 � p


From Rn	t
 � np�� np the di�erence equation is obtained� The di�erence equation 	��

has been approximately solved by M�uhlenbein et al� 	���
�
�

Numerical simulations have con�rmed that Equation � is a good prediction for
univariate marginal frequency algorithms� It is also a good approximation for a genetic
algorithms with uniform crossover� In this case p	t
 converges more slowly to � because
the �tness distribution is slightly di�erent from a binomial distribution� This has already
been observed by M�uhlenbein et al� 	���
 for truncation selection�
Equation � has subsequently been used by Thierens and Goldberg 	���
� B�ack

	���
� and Miller and Goldberg 	���
� Their simulations con�rm that the approximate
solution is in excellent agreement with empirical results� But in these papers� the di�cult
theoretical derivation of the approximate solution is missing� To summarize the major
steps� First� we have shown that the selection intensity of the binomial distribution and
of the corresponding normal distribution are almost identical� even for a small number
of loci� Second� for UMDA the �tness distribution is binomial� and third we had to show
that realized heritability is �
Recalling our earlier remark concerning binary tournament selection� we remind the

reader of the surprising fact that Equation � is valid for all �tness function obeying the
order relation 	��
� The function ONEMAX	n
 was only needed in order to apply the
breeders� equation�
It is fairly straightforward to compute the univariate marginal frequencies for other

order relations� For simplicity we just state the results for some instances with two loci�

Theorem �� Let the �tness values obey the order relation

	I
 g	�
 � g	
 � g	�
�

then the marginal frequency is given by

p� � p� p	 � p
	 � p� p�
� 	��


Let the order relation be
	II
 g	�
 � g	
 � g	�
�

then
p� � p� p	 � p
p�� 	��


Let the order relation be
	III
 g	
 � g	�
 � g	�
�

then
p� � p� p	 � p
	�p � 
� 	��


Let the order relation be
	IV 
 g	�
 � g	�
 � g	
�

then
p� � p� p	 � p
	 � p � p�
� 	��


��



Proof� The �rst case was proven before� We sketch only the proof for the last case� the
other cases can be proven in the same manner� Counting the tournaments we obtain�

ps	�� �
 � p	�� �
p	�� �
 � 	 � p
�

ps	�� 
 � 	�p	�� �
 � �p	� 
 � �p	�� 

p	�� 
 � �		� p
� � p� � p	 � p

p	 � p


ps	� �
 � ps	�� 


ps	� 
 � 	�p	�� �
 � p	� 

p	� 
 � 	�	 � p
� � p�
p�

From
p� � ps	�� 
 � ps	� 
�

we obtain after some computation the equation

p� � p� p	 � p
	 � p� p�
� �

Note that for order relation 	III
 p � ��� is an isolated �xed point� For order relation
	IV
� there is a stable attractor in the interior at about p � ������� This value is the
root of p� � p �  � �� Table � gives some numerical results� For comparison� results
for ONEMAX and proportionate selection are also given� Here p obeys the di�erence
equation 	M�uhlenbein et al�� ���


p� � p �


�
	� p
�

t p � �I� p � �prop�� p � �II� p � �III� p � �IV �
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Table �� Results for binary tournament selection 	 order relations 	I
 till 	IV

 and
proportionate selection ONEMAX

Binary tournament selection does not take the �tness values into account" only the
order relations are relevant� This leads to the following behavior� The function g	�
 �
�� g	
 � �� g	�
 �  is contained in class 	I
� The function g	�
 � �� g	
 � �� g	�
 � 
is contained in class 	II
� They are mathematically almost identical� Nevertheless� the
di�erence equations for p are very di�erent�
From Theorem � another important result can be derived� The �tness function

g	�
 � �� g	
 � �� g	�
 �  is contained in class 	III
� If the univariate marginal fre�
quency p of the initial population is less than ���� then p will converge to p � �� Now the

��



average �tness of the population is given by �f � p�� Therefore the response is negative�

Remark� For binary tournament selection the average �tness of the population may
decrease


For ONEMAX realized heritability is � both for proportionate selection and tour�
nament selection� But it can be very di�erent which we show with a contrived example�

Example� Let the �tness function be given by g	�
 � �� g	
 � �� g	�
 � � with � �� �
For proportionate selection obviously R	t
 � S	t
 � � � �p�� Thus realized heritability
is � independent of p� For binary tournament selection one computes S	t
 � �p�	�p�

and R	t
 � �p�	 � p
	 � p � p�
	� � �p � �p� � p�
� Therefore realized heritability is
given by

b�	t
 �
	 � p� p�
	� � �p � �p� � p�


 � p
p �� �� �

Thus b�	t
� � for p� � and b�	t
�  for p� �

Realized heritability depends on the selection method
 For binary tournament selec�
tion it might even be greater than �
 Therefore estimates for realized heritability for
proportionate selection can be very poor for tournament selection

In the next section we compute an exact response equation for arbitrary �tness func�

tions�

�� The exact response for binary tournament se�

lection

Tournament selection uses only the order relation of the �tness values� Therefore� the
evolution of the univariate marginal frequencies depends on the order relation only� In
the computation of the additive variance the �tness values play a major role� This
indicates that the additive genetic variance may be of limited value for predicting the
behavior of genetic algorithms using binary tournament selection� We show this by
de�ning a modi�ed �tness function b� With b we can formulate tournament selection as
an instance of proportionate selection� Let us �rst de�ne �payo�� coe�cients

axy �

��
��
� f	x
 	 f	y

 f	x
 � f	y

� f	x
 � f	y


We model tournament selection as a game� Two individuals with genotype x and y
�play� against each other� The one with the larger �tness gets a payo� of �� If the �tness
values are equal� both will win half of the games� This gives a payo� of � Because the
payo� matrix is derived from a game one can show 	x and x denote the same variable
X

x

X
y

p	x� t
axyp	y� t
 � �

After a round of tournaments the genotype frequencies are given by

ps	x� t� 
 � p	x� t

X
y

axyp	y� t
� 	��


��



If we set
b	x� t
 �

X
y

axyp	y� t
�

then the above equation de�nes proportionate selection for the function b� But b depends
on the genotype frequencies� Furthermore the average remains constant� �b	t
 � �
The di�erence equations for the univariate marginal frequencies can be written as in

Equation ��

%pi � pi	t
	� pi	t


Bi	� t
�Bi	�� t


W
�

where Bi is given by 	see Equation �� and following


Bi	� t
 �
X

xjxi��

b	x� t

nY
j��
j ��i

pj	xj� t
� 

Bi can be very di�erent from the terms Fi used for proportionate selection and the
additive variance� We now formulate the exact response equation for binary tournament
selection�

Theorem �� Let 'Bi	t
 � Bi	� t
 � Bi	�� t
 and 'Fi	t
 � Fi	� t
 � Fi	�� t
� Then for
UMDA with binary tournament selection the reponse to selection is given by

R	t
 �
nX
i��

pi	t
	� pi	t


'Bi	t
 	 'Fi	t


W

�


�

X
i ��j

pi	t
	� pi	t

 'Bi	t
pj	t
	� pj	t

 'Bj	t


W �


�W


pi
pj

�


�$

X
i��j�j ��k�i��k

pi	t
	� pi	t

 'Bi	t
pj	t
	� pj	t

 'Bj	t
pk	t
	� pk	t
 'Bk	t


W �


�W


pi
pj
pk
� ���� 	��


Proof� See Theorem ��
�

For proportionate selection we have Bi	� t
 � Fi	� t
� But for tournament selection the
terms Bi are usually di�erent from Fi� In this case Fi cannot be used to estimate the
behavior of binary tournament selection� Particularly the response can be di�erent from
�� even if the additive genetic variance VA	t
 is ��
We summarize the major points concerning selection� The three most popular se�

lection methods � proportionate selection� truncation selection and tournament selection
� have their strong and their weak points� The result of tournament selection is inde�
pendently of the �tness values� Only the order relation is used� Proportionate selection
selects too weakly when the population approaches the optimum� This can be observed in
Table �� At the beginning� p increases at a much faster rate than for binary tournament
selection� giving a faster convergence to the optimum p � � But when p approaches �
the increase of p gets smaller and smaller�
Truncation selection is a compromise between proportionate and tournament selec�

tion� It uses the �tness values to determine the truncation point� but all selected points

��



are treated equally� Therefore heritability for proportionate and truncation selection are
much more similar than for proportionate and binary tournament selection� Therefore
the breeders� equation can be used for proprotionate as well as for truncation selection�
For binary tournament selection the �rst term of Equation �� should be used�

�� An incremental UMDA implementation

The investigations so far have indicated that the UMD algorithm is as plausible as any
genetic algorithm using some kind of two�parent recombination� In order to implement
UMDA� estimates for the univariate marginal distributions are necessary� These esti�
mates are provided by the selected parents� But one can also design a simpler algorithm
that takes previous marginal frequencies into account as well� An algorithm� which does
this� has in fact already been proposed independently from the theory presented in this
paper 	Baluja et al�� ���
� In this algorithm the univariate marginal frequencies are
updated according to the rule

pi	xi� t� 
 � pi	xi� t
 � 	ri	xi� t
� pi	xi� t

� 	��


where ri	xi� t
 are the marginal frequencies of the selected points and  is a control pa�
rameter� We call the resulting algorithm the incremental univariate marginal distribution
algorithm 	IUMDA
�

IUMDA

� STEP�� Set t� � Set pi	xi� 
�

� STEP�� Generate N new points according to the distribution p	x� t
 �Qn
i�� pi	xi� t
�

� STEP�� Select M � N points according to a selection schedule� Compute the
marginal frequencies ri	xi� t
 of the selected set�

� STEP�� Update the marginal frequencies according to equation 	��
� Set t �
t� �

� STEP	� If termination criteria not met� go to STEP�

Note that  in�uences the speed of convergence� The smaller  is� the slower the conver�
gence speed� Before we show some computational results� we qualitatively analyze the
algorithm� In Equation �� only the univariate marginal frequency of loci i is used for
updating� Therefore we simplify the notation by omitting the index i� i�e� pi	xi� t
 � p	t

and ri	xi� t
 � r	t
� We start with the simplest case�

Theorem �� Assume that r	t
 � c with � � c � 
 Then

p	t � 
 � p	
	 � 
t � c	� 
t � c t � �� � � � � 	��


The proof is straightforward and will be omitted� We obviously have

limt��p	t
 � c�

In real applications r	t
 will oscillate� A qualitative analysis of the IUMDA algorithm
has been done by Kvasnicka et al� 	���
�

��



Theorem �� If the dierence equation ���	 can be approximated by the dierential
equation

dp	t


dt
�  	r	t
� p	t

 � 	��


the solution is given by

p	t
 � p	
e��t � e��t
Z t

�
r	� 
e��d�� 	�


Equation � cannot be used for prediction because r	t
 is not known in advance� but
it explains the qualitative behavior of the algorithm� One often observes that IUMDA
consists of two phases� In the �rst phase 	� � t � t�
 r	t
 more or less randomly oscillates
about a mean � r	t
 	t�

� � Then it moves to either � or � forcing p	t
 also to move in
this direction�
In Table  we give numerical results for the linear function ONEMAX� Note how

 in�uences the convergence speed� For ONEMAX  � ���� leads to a much faster
convergence than  � ��� Because the size of the population N was �xed and very
large� the speed of convergence is almost independent of the size of the problem� n� For
di�cult multi�modal �tness functions� the success of IUMDA critically depends on the
parameters  and N � We omit a detailed discussion here� It is obvious that IUMDA
su�ers from the problem all algorithms using univariate marginal distributions have�
they are not able to handle higher�order gene interactions�

� � ��� � � ����
n��� n��� n�	� n�
�

t �p std�p �p std�p �p std�p �p std�p
�� ����	 ����
 ��
�� ����� ����� ����	 ����� �����
�� ���
� ����� ��

� ����� ��

� ����� ��
�� �����
�� ��
	� ����
 ����� ����� ����� ����� ��


 �����

Table � IUMDA Results for ONEMAX� N � ���

�� From recombination to the estimation of distri�

butions

Practical and theoretical investigations have shown the limitations of simple genetic
algorithms� Therfore new methods have been tried or are being developed to detect and
exploit nonlinear gene interactions� They can be classi�ed as follows�

� Adaptive recombination
� Explicit detection of relations 	Kargupta  Goldberg� ���

� Dependency trees 	Baluja  Davies� ���

� Estimation of distributions 	M�uhlenbein  Paa(� ���� De Bonet et al�� ���



��



Adaptive recombination uses a number of heuristics to modify two�parent recombina�
tion� Kargupta�s 	���
 Gene Expression Messy Genetic Algorithm 	GEMGA
 tries to
detect dependency relations by manipulating individual substrings� GEMGA has only a
local view of the data� Kargupta and Goldberg 	���
 support our view concerning the
limitations of Mendelian recombination� �Unless GAs do a better job in linkage learn�
ing� they will continue to search poorly in relation space�� The last two methods use
all the statistical information contained in the population of selected points to detect
dependencies� They have a global view of the data� Conceptually they can be described
as follows 	estimation of dependency algorithm 	EDA

�

EDA

� STEP �� Set t� � Generate N  � points randomly�

� STEP �� Select M � N points according to a selection method� Estimate the
distribution ps	x
 of the selected set�

� STEP �� GenerateN new points according to the distribution ps	x
� Set t� t��

� STEP �� If termination criteria are not met� go to STEP �

The estimation of distributions is a notoriously di�cult statistical problem� Furthermore�
for optimization there is a trade�o�� If lots of computing time has to be used to get a
good estimate of the distribution� then this e�ort has to pay o�� It has to lead to a
substantial reduction of function evaluations in order to beat a simple algorithm like
UMDA�
At least for continuous genes� one method that e�ciently detects second order in�

teractions does exist" the method is known as principal component analysis PCA� The
technique of �rst doing a principal component analysis and then performing gene�pool
recombination in the transformed space� has been successfully used for the optimization
of di�cult �tness functions by Voigt and M�uhlenbein 	���
� It is interesting to note
that in evolution strategies the need for second order models has been recognized very
early 	B�ack  Schwefel� ���
�
For discrete genes an obvious extension of univariate marginal distribution algo�

rithms are multivariate ones� But it is di�cult to generate p	x
 from multivariate
marginal distributions� We just demonstrate the problem with an example� For n � �
loci for instance� we may use p	x
 � p	x�� x�
 p	x�� x�
� But then four of the six bi�
variate distribution are left out� There exist methods to solve this problem by solv�
ing a system of equations� but it seems easier to start with conditional distributions
p	xijx�� � � � � xi��� xi��� � � � � xn
 to reconstruct interactions between the variables�
With x�i �� 	x�� � � � � xi��� xi��� � � � � xn
 let p	xijx�i
 denote the probability of xi given

x�i� Besag 	���
 has proven that the n di�erent conditional distributions p	xijx�i
�
i � � � � � � n� completely determine the joint distribution p	x
�
An algorithm based on the above conditional distributions is presented in 	M�uhlen�

bein  Paa(� ���
� It is computationally so expensive that it is of theoretical value only�
A more pragmatic way is to limit the conditional distributions to only pairwise condi�
tional probabilities p	xijxj
� Then one should generate samples that match as closely as
possible the true joint distribution ps	x
� This method has been used by De Bonet et
al� 	���
�

��



By introducing memory it is possible to incrementally change the sampling distribu�
tion instead of relying only on the distribution ps	x
� This method was introduced with
the IUMDA algorithm� IUMDA has been extended by Baluja and Davis 	���
� Like
Bonet et al� 	���
 they restrict the estimation to pairwise conditional probabilities�
These probabilities de�ne a conditional dependency tree� This representation is more
general than the chain used by De Bonet et al� 	���
�
Future research will show which of the di�erent methods are of practical relevance

for optimization� It has to be investigated if the e�ort to compute second or even higher
order interactions really pays o�� either in getting much better solutions or in reducing
the number of function evaluations to get the same quality of solutions� For the more
theoretical analysis it is an open research question whether exact response equations can
be computed for some of the new methods�

�	 Conclusion

In this paper we have computed exact equations for the response to selection under the
assumption that the genotypes are in Robbins� proportions� For proprotionate selection it
follows that UMD algorithms mainly exploit the additive genetic variance� But the exact
response equation for tournament selection di�ers from that of proportionate selection
already in the �rst term� It can even be wrong that the response is zero if the additive
genetic variance is zero� Furthermore realized heritability can be di�erent for tournament
selection and proprotionate selection� These results weaken the classical concept of
heritability at least in the context considered in this paper � discrete genes with arbitrary
�tness contributions�
Our results have been derived under the assumption of an in�nite population� Fur�

thermore mutation has been neglected� It has been shown that for genetic algorithms
with a reasonable population size and small mutation the in�nite population size equa�
tions are a reasonable approximation 	M�uhlenbein et al�� ���
� But our results cannot
be extended to genetic algorithms using a small population and a high mutation rate�
Here stochastic e�ects have to be modelled� Given the mathematical di�culty of the in�
�nite population size model� we doubt that a mathematical analysis of �nite populations
will be possible�
We have supplied a number of arguments that genetic algorithms with two�parent

recombination are not so much di�erent from UMD algorithms� They are also not able
to detect nonlinear gene interactions in a systematic way� This result explains why ge�
netic algorithms using two�parent recombination have di�culties in optimizing nonlinear
�tness functions with interacting genes� We have outlined new methods to detect in�
teracting genes in nonlinear �tness functions� These methods rely on the estimation of
empirical distributions� a di�cult problem of statistics� Future research will show if one
of the new methods will be of practical relevance for optimization�

Appendix �

Here we prove that for UMDA the response is always greater or equal to zero� The
Theorem follows from an inequality proven by Baum and Eagon 	���
� We just state
their inequality in our notation� For notational convenience we assume binary genes�
Then we have for each loci two marginal frequencies pi� � pi	
 and pi� � pi	�
 �

�



 � pi	
� We furthermore de�ne the average of the population as

W 	p�� � � � � pn� t
 � �f 	t


Theorem �� �Baum� Eagon Let W 	p
 � W 	fpijg
 be a polynomial with nonnega�
tive coe�cients homogeneous of degree n in its variables pij � i � � � � � n� j � � �
 Let
p � fpijg be any point of the domain D � pij 
 �� pi� � pi� � 
 For p � D let p� denote
the point of D whose i� j coordinate is given by

p�ij �
pij

�W
�pij

j
p

pi�
�W
�pi�

j
p
� pi�

�W
�pi�

j
p

	��


Then W 	p�
 	 W 	p
 unless p� � p


In order to apply the Theorem we just have to show that Equation �� is identical to
our Equation �� for the univariate marginal frequencies� Obviously


W


pi�
j
p
� �fi	� t



W


pi�
j
p
� �fi	�� t
�

Furthermore the identity

pi� �fi	� t
 � pi� �fi	�� t
 �W 	p�� � � � � pn� t


is valid� Combining the above equations shows that the frequencies of the UMDA algo�
rithm obey Equation ��� Therefore Theorem � follows from the above Theorem�

Appendix �

Let Rn	t
 be de�ned by Equation �� and Sn	t
 by Equation ���

Theorem For ONEMAX	n
 the realized heritability of the univariate marginal
distribution algorithm with binary tournament is equal to �� i
e


Rn	t
 � Sn	t


Proof� We introduce

S�n	t
 �
Sn	t
� np

n
�  � 

n

n��X
i��

B�
i 	n� p
�

with

Bi	n� p
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iX

j��

�
n

j

�
pj	� p
n�j � i � �� � � � � n�

Similarly we use

R�
n	t
 �
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n
�

We compute
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Let us introduce

Pn�j �

�
n

j

�
pj	� p
n�j �

Now R�
n	t
 � S�n	t
 holds if

n �
n��X
i��

B�
i 	n� p
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nX
i��

iPn�i 	�Bi	n� p
� Pn�i
 �

Because of B�
n	n� p
 � � the equation
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nX
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�
B�
i 	n� p
 � �iPn�iBi	n� p
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�

has to be proven� Using Bi	n� p
 �
Pi

j�� Pn�j we have to show
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Evaluating the �rst sum we obtain

n�  � 	n � 

nX
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Using the identity

 �
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X
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we have to prove
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A � �	n � 
 X

��j�k�n

Pn�jPn�k�

By carefully counting the number of instances of Pn�j the above identity follows� This
completes the proof�
�
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