
Chapter 1

TOWARDS A THEORY OF ORGANISMS
AND EVOLVING AUTOMATA
OPEN PROBLEMS AND WAYS TO EXPLORE

Heinz M-uhlenbein

Abstract We present 14 challenging problems of evolutionary computation, most of them
derived from unfinished research work of outstanding scientists such as Charles
Darwin, John von Neumann, Alan Turing, Claude Shannon, and Anatol Rapa-
port. The problems have one common theme: Can we develop a unifying theory
or computational model of organisms (natural and artificial) which combines the
properties structure, function, development, and evolution? There exist theories
for each property separately and for some combinations of two. But the combi-
nation of all four properties seems necessary for understanding living organisms
or evolving automata. We discuss promising approaches which aim in this re-
search direction. We propose stochastic methods as a foundation for a unifying
theory.

1. Introduction

The aim of this book is very ambitious. Its title is not: important problems in
evolutionary computation, but Hilbert problems in evolutionary computation.
What makes Hilbert’s problems so famous and unique? Hilbert designed his
problems with the goal that “they could serve as examples for the kinds of
problems the solutions of which would lead to advancements of disciplines
in mathematics.” If we have a closer look at Hilbert’s twenty-three problems
today, then we observe that some of the problems indeed lead to important
research, but a few of them did not. One of the reasons seems to be how the
problems have been formulated. Most of them are well defined, but some are
more vaguely posed, making a solution difficult.

In fact, the paper became famous because of question number two: Can it
be proven that the axioms of arithmetic are consistent? Hilbert’s question is a
sub-problem of the general research program Hilbert had in mind: Can math-
ematics be axiomatized? The general problem was taken on by Russel and
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Whitehead and lead to three volumes of the Principia Mathematica. G-odel
dealt with the more specific problem two and proved that the answer is nega-
tive. This put an end to the effort of Russel and Whitehead. The implication
of G-odel’s result with regard to mathematics and the theory of computation in
general is still a subject of hot discussions.

In contrast, problem number six just reads: Can physics be axiomatized?
In the explanation of the question Hilbert writes: “to axiomize those physical
disciplines, in which mathematics already plays a dominant role; these are first
and foremost probability and mechanics.” To our surprise we see the calculus
of probability as a part of physics! A closer inspection reveals that Hilbert’s
moderate goal was a mathematically sound application of probability to kinetic
gas theory. This research has been carried out by physicists, but without ever
referring to Hilbert or to a Hilbert problem. It lead to statistical physics as it
appears today.

My goal is modest. I will propose problems, mainly in evolutionary compu-
tation, and name each after a famous scientist who has formulated or investi-
gated the problem. This does not imply that the problem so named is the most
important the scientist has worked on. Nor do I claim that the scientist has
considered the problem to be the most important one he has worked on. I only
want to demonstrate that most of the challenging problems have been identi-
fied very early and are with us for quite a time. And my second message is: we
have to look much more into older papers. Older scientific papers should not be
considered as “fossils”. It is a fundamental misconception that science is con-
tinuously accumulating all the important available knowledge and condensing
the knowledge in surveys or textbooks. Many important scientific ideas and
papers enter main stream science after 20 or more years.

I will consider in the paper both – natural and artificial organisms. The
emphasis will be on artificial automata. In order not just to summarize the
problems, I will also describe in sections 11 till 13 a scientific method I con-
sider as a promising candidate for solving some of the problems presented. It
is the theory of probability, used and extended in scientific disciplines as dif-
ferent as probabilistic logic, statistical physics, stochastic dynamical systems
and function optimization using search distributions. These sections will be
fairly selfish, because in selecting from the huge available literature the work
of my research group will be over-represented.

2. Evolutionary computation and theories of evolution

The goal of evolutionary computation is to make the development of pow-
erful problem solving programs easier. There have been tried at least three
approaches to achieve this goal.
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1 Use a theory - develop a theory of problem solving and implement it on
a computer

2 Copy the brain - analyze the human brain and make a copy of it on a
computer

3 Copy natural evolution - analyze natural evolution and implement the
most important evolutionary forces on a computer

In the history of artificial intelligence research one of the three approaches
was dominant at any one time. Evolutionary computation belongs to the third
approach. It relies on theories of evolution and of computation. The theory
of computation is well advanced, so the problems of evolutionary computation
lie in theories of evolution. If there existed a convincing constructive theory of
evolution, then evolutionary computation would be just a matter of implemen-
tation - which of the major evolutionary forces to implement in what detail.

But do we possess a constructive theory of evolution? Here the opinions dif-
fer extremely. The main stream theory of evolution is called New or Modern
Synthesis. Its followers claim that it reconciles Darwin’s idea of continuous
small variations with gene flows derived from population genetics. The second
major force of the Modern Synthesis is still Darwin’s concept of natural selec-
tion. But are these two forces sufficient to explain the wonders of evolution at
least in some broad terms?

There is no doubt that the modern synthesis is able to explain the change
of gene frequencies on a small time scale. If there is enough diversification,
then the theory correctly predicts further changes for a short time. But can it
explain the evolution for a long time? Here the crucial question is: How could
it come to such a diversification, starting from a tiny cell? I like to formulate
the problem with Darwin’s famous ending sentence of The Origin of Species
by Means of Natural Selection (Darwin, 1859).

“There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet
has gone cycling on according to the fixed laws of gravity, from so simple a
beginning endless forms most beautiful and most wonderful have been, and are
being, evolved.”

Let me be more specific and cite some major problems which a theory of
evolution would have to explain. Maynard Smith and Szathmary have called
them the the major transitions in evolution (see table 1.1, Smith and Szathmary,
1995).

The authors “solve” some of the problems with a very narrow version of the
modern synthesis. “We are supporters of the gene centered approach proposed
by Williams and refined by Dawkins, 1989.” In the gene centered approach,
also called the selfish gene concept, the genes are the major actors. They pos-
sess an internal force to proliferate as much as possible.
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before � after
replicator molecules � population of molecules in compartments
independent replicator � chromosomes
RNA as gene and enzyme � DNA and protein
procaryote � eucaryote
asexual clones � sexual population
protist � plants, animals, fungi
solitary individuals � colonies
societies of primates � human societies

Table 1.1. Major transitions in evolution

This caricature of a theory of evolution is used by the authors to explain the
transition from solitary individuals to colonies, for example. The argument is
as follows: If a female produces two offspring, but n females can produce 3n
offspring, then cooperation between the females pays off. Even if there is a
fight between females and one becomes a queen, cooperation is still preferred
(1/n of 3n is larger than 2). Thus in the gene centered analysis a colony with a
single queen has a selective advantage.

There are many flaws in the selfish gene concept. It is not constructive,
it does not investigate if the selection advantage of a particular gene can be
realized in a phenotype. Rabbits with wings would obviously have a selective
advantage. Why did it not happen? Two genes can also oppose each other
- gene 1 might increase by action ��, and gene 2 by the opposite action ��.
Which gene wins? Consider a female and its offspring as an example. The
offspring are threatened. Should the mother protect the offspring, even on the
risk of her life? The notorious formula of Hamilton gives the result that the
mother should sacrify her life if more than two offspring are threatened (Smith
and Szathmary, 1995). Hamilton argues as follows: in each offspring there are
only one half of the genes of the mother. Thus the genes of the mother multiply
if she protects at least three offspring.

Ironically Darwin itself has devoted a whole chapter of his “The Origin of
Species” to the problem insect colonies pose to natural selection. His explana-
tion is constructive. He shows how many small changes in behavior can lead
to very peculiar behavior, even to slave making ants! This example shows dra-
matically the extreme simplification done by the selfish gene concept. It is my
strong opinion that the selfish gene concept does not enrich Darwin’s theory,
but reduces it to a caricature.

The selfish gene concept has been opposed by a small group in biology, most
notably the late Stephen J. Gould. Recently even philosophers of science for-
mulate a basic critic. I just cite Griffiths, 2002. “The synthetic theory bypassed
what were at the time intractable questions of the actual relationship between
stretches of chromosomes and phenotypic traits. Although it was accepted
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that genes must, in reality, generate phenotypic differences through interaction
with other genes and other factors in development, genes were treated as black
boxes that could be relied on to produce phenotypic variation with which they
were known to correlate.”

I will discuss this problem later with my proposal of a system theory of
evolution. The major conclusion of this section is: there exists no convincing
theory of evolution today. The “theory” its proponents call “Modern Synthe-
sis” is an extremely simplified version of Darwin’s theory. It separates or-
ganisms and environment. Natural selection is modeled by a fitness function,
whereas Darwin used the term only in a metaphoric sense. In fact, Darwin
noticed the misinterpretation of his theory even during his life. He wrote in the
last (1872) edition of “The Origin of Species”:“As my conclusions have lately
been much misrepresented, and it has been stated that I attribute the modifica-
tion of species exclusively to natural selection, I may be permitted to remark
that in the first edition of this work, and subsequently, I placed in a most con-
spicuous position — namely at the close of the Introduction — the following
words: “I am convinced that natural selection has been the main but not the ex-
clusive means of modification.” This has been of no avail. Great is the power
of steady misinterpretation.”

Therefore evolutionary computation has to be largely experimental. This
was already pointed out by John von Neumann, 1954. “Natural organism are,
as a rule, much more complicated and subtle, and therefore much less well un-
derstood in detail, than are artificial automata. Nevertheless, some regularities,
which we observe in the organization of the former may be quite instructive
in our thinking and planning of the latter; and conversely, a good deal of our
experiences and difficulties with our artificial automata can be to some extend
projected on our interpretations of natural organisms.”

3. Darwin’s continental cycle conjecture

I will describe my first problem in Darwin’s terms. In the chapter “Cir-
cumstances favourable to Natural Selection” Darwin writes: “A large number
of individuals by giving a better chance for the appearance within any given
period of profitable variations, will compensate for a lesser amount of vari-
ability in each individual, and is, I believe, an extremely important element of
success.”

On the other hand Darwin observes that a large number of individuals in
a large continental area will hinder the appearance of new adaptations. This
happens more likely in small isolated areas. He writes: “Isolation, also, is an
important element in the process of natural selection. In a confined or isolated
area, if not large, the organic and inorganic conditions of life will be in a great
degree uniform; so that natural selection will tend to modify all individuals
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of a varying species throughout the area in the same manner in relation to
the same conditions. But isolation probably acts more efficiently in checking
the immigration of better adapted organisms. Lastly, isolation, by checking
immigration and consequently competition, will give time for any new variety
to be slowly improved.”

Darwin then continues: “Hence an oceanic island at first sight seems to have
been highly favourable for the production of new species.” But Darwin notes a
conflict: “to ascertain whether a small isolated area or a large open area like a
continent, has been most favourable for the production of new organic forms,
we ought to make the comparison within equal times; and this we are incapable
of doing. ”

Despite of the above observation Darwin concludes: “I conclude, that for
terrestrial productions a large continental area, which will probably undergo
many oscillations of level, and which consequently will exist for long periods
in a broken condition, will be the most favourable for the production of many
new forms of life, likely to endure long and spread widely.” Darwin reasons as
follows: “For the area will first have existed as a continent, and the inhabitants,
at this period numerous in individuals and kinds, will have been subjected to
very severe competition. When converted by subsidence into large separate
islands, there will still exist many individuals of the same species on each
island;� � � and time will be allowed for the varieties in each to become well
modified and perfected. When by renewed elevation, the islands shall be re-
converted into a continental area, there will be again severe competition: the
most favoured or improved varieties will be enabled to spread: there will be
much extinction of the less improved forms . . . ”

Problem 1 [Darwin]: Can we demonstrate or even prove the correctness of
Darwin’s Continent-Island cycle conjecture?

The reader should have observed how carefully Darwin discusses the ar-
guments. I strongly recommend to read Darwin’s “The Origin of Species”.
The most profound critique of modern “Darwinism” can be found in Darwin’s
book!�

It seems difficult to test Darwin’s conjecture in nature. I propose therefore
to use simulations as first step. I have used the iterated prisonert’s dilemma
game to investigate problem 1 (M-uhlenbein, 1991a). The results indicate that
Darwin’s conjecture might be correct. But the simulation model needs a lot
more refinement.

Darwin mentions at many places of the “Origin” that space is as important
for evolution as time. This has been shown in the context of genetic algorithms
by M-uhlenbein, 1991b. Space is also an important element of Wright’s shift-
ing balance theory of evolution Wright, 1937. Without referring to Darwin a
subset of the problem, that is the difference of the evolution in a large con-
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tinent and small isolated islands, has been recently investigated by Parisi and
Ugolini, 2002.

4. The system view of evolution

The next set of problems I will derive more abstract. The major weakness
of “Darwinism” in the form of the modern synthesis is the separation of the
individuals and the environment. In the most simple model each individual
�� (mainly characterized by its genes) is assigned a fitness � predicting the
performance of this individual within the environment � and given the other
individuals. This can be written as:

����� �� � ���� �����

���� �� � ������

It seems impossible to obtain numerical values for the fitness. Therefore
theoretical biology has made many simplifications. The environment is kept
fixed, i.e ������� � 	
���, the influence of other individuals is described by
some averages of the population, etc.. The shortcomings of the dichotomy
individual-environment in the Modern Synthesis have already been discussed.
The problem is still more difficult because each individual is in addition devel-
oping in a close interaction with its environment.

The development problem has been addressed recently by Oyama, 2000, in
her developmental system theory. Unfortunately the theory is very informal,
it has been formulated from a philosopher’s point of view. Therefore I will
describe the next problem as it has been stated in the final address of Ana-
tol Rapaport, the then retiring president of General System Science Society (
Rapaport, 1970).

Problem 2 [Rapaport+1]:Can we formulate a theory of organisms, which
incorporates being, acting, evolving, and developing?

Rapaport identified only three properties. He combined evolving and devel-
oping into a single property becoming. The problem needs an explanation. It
goes back to Whitehead, 1948. In his book “Science and the Modern World”
Whitehead warned that the store of fundamental ideas on which the then con-
temporary science was based was becoming depleted. Whitehead suggested
that the concept of organism, hitherto neglected in physical science, might be
a source of new ideas. Whitehead tried to define what an organism character-
izes.

We will describe the definition of Rapaport. “According to a soft definition,
a system is a portion of the world that is perceived as a unit and that is able
to maintain its identity in spite of changes going on in it. An example of a
system par excellence is a living organism. But a city, a nation, a business
firm, a university are organisms of a sort. These systems are too complex
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to be described in terms of succession of states or by mathematical methods.
Nevertheless they can be subjected to methodological investigations.”

Rapaport then defines: “Three fundamental properties of an organism ap-
pear in all organism-like systems. Each has a structure. That is, it consists
of inter-related parts. It maintains a short-term steady state. That is to say, it
reacts to changes in the environment in whatever way is required to maintain
its integrity. It functions. It undergoes slow, long term changes. It grows,
develops, or evolves. Or it degenerates, disintegrates, dies.

Organisms, ecological systems, nations, institutions, all have these three
attributes: structure, function, and history, or, if you will, being, acting, and
becoming.”

Rapaport’s becoming captures both – the development of an organism from
the fertilized egg to the grown-up organism, and the evolution of the species
in a succession of many generations. Despite its very intricate relationship,
development and evolution have to be separated.

To my knowledge, Rapaport’s talk did not lead to a scientific effort to build
such a theory of organisms. The reader will guess the reason: it is the sheer
complexity of the task! Instead research in biology remained concentrated on
a single property or to a combination of two properties. Thus population ge-
netics combines being and evolving, population dynamics combines being and
acting. The developmental system theory mentioned earlier combines being
and developing.

The investigation of question two leads to another problem: In what lan-
guage should we frame a theory of organisms? Three approaches can be tried:

The descriptive approach, using natural language

The micro-simulation approach

The mathematical approach

Today the descriptive approach has gained momentum, characterized by the
developmental system theory mentioned above Oyama, 2000. Artificial Life
uses micro-simulation. But in micro-simulations it is very difficult to distin-
guish between the microscopic event and the more general pattern happening
in many simulations. Rapaport and, earlier, von Neumann advocated the math-
ematical approach. I go a step further and propose stochastic system theory
as the research foundation. Whereas population genetics has been a stochastic
theory for almost 75 years, population dynamics is still mainly investigated
with the help of deterministic differential equations.
Thus I partition Rapaport’s problem into three problems.

Problem 3a: Can we develop a stochastic system theory, combining the
properties being and acting of organisms or automata in a 2-d space?



Towards a Theory of Organisms and Evolving Automata 9

Problem 3b: Can we develop a stochastic system theory, combining the
properties being and developing of organisms or automata in a 2-d space?

Problem 3c: Can we develop a stochastic system theory, combining the
aspects being, acting and evolving of organisms or automata in a 2-d space?

The answer to the first question is a definite yes. It is already an active area
of research. We will discuss it later in more detail in the context of cellular
automata. The second problem seems to be much more difficult. Von Neumann
was the first who worked on this problem for the case of automata.

5. Von Neumann’s self-reproducing automata

Von Neumann started his research with the concept of “complification”. He
used the term very informally. We proceed in the same way. It is outside the
scope of this paper to discuss all the measures proposed for complexity. Also
the term automaton will be used in a broad manner. Von Neumann observed:
“If automaton A can produce B, then A in some way must have contained a
complete description of B. In this sense some decrease in complexity must
be expected as one automaton makes another automaton.” But organisms re-
produce themselves with no decrease in complexity. Moreover, organisms are
indirectly derived from others which had lower complexity.

Problem 4 [von Neumann]: Can we construct automata which are able to
produce automata more complex than themselves?

Von Neumann tried several approaches to enable a scientific investigation of
the above problem. The main theory was collected by Burns and expended into
a theory of self-reproducing automataBurns, 1970. But it is more instructive
to look at von Neumann’s own description, summarized in the article “The
General and Logical Theory of Automata”. von Neumann, 1954.

Von Neumann started his research with a result of Turing. Turing wanted
to give a precise definition of what is meant by a computing automaton. His
solution was the Universal Turing Machine UTM. It consists of an automaton
reading and writing symbols on an infinite tape. Von Neumann decided that his
automaton should have the power to simulate the UTM in a discrete cellular
2-d space. Thus he investigated the problem how to construct an automaton
which reproduces itself in 2-d space and has the power of UTM.

Von Neumann’s construction proceeded as follows von Neumann, 1954:
(a) Construct an automaton A, which when furnished the description of any

other automaton in terms of appropriate functions, will construct that entity.
(b) Construct an automaton B, which can make a copy of any instruction 

that is furnished to it. This facility will be used when  furnishes a description
of another automaton.

(c) Combine the automata A and B with a control mechanism �, which does
the following. � will first cause A to construct the automaton which is de-
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scribed by . Next � will cause B to copy the instruction . Finally � will
separate this construction from the system ��� � � � �

(d) Form an instruction �, which describes this automaton D, and insert
� into A within D. Call the aggregate which now results E.

E is clearly self-reproducing. But E cannot do anything besides reproduc-
tion. It needs a program. Therefore von Neumann proposed an extension:
Replace the instruction � by an instruction ��� which describes automa-
ton D plus another automaton F. This automaton reproduces itself and then
behaves like automaton F. Now if a “mutation” within the F part takes place, it
changes �� into �� � . This “mutant” is still self-reproductive.

Von Neumann believed that with this construction he had made crude steps
in the direction of a systematic theory of automata, especially towards forming
a rigorous concept of what constitutes “complication.” At a first glance, the
construction seems to be an solution of the automatic programming problem.
But why did not von Neumann’s self-reproducing automata have any practical
relevance? The answer is simple: The construction does not solve the most
important problem: How do the programs get into the machine? The develop-
ment of programs is the problem, not their self-reproduction. Von Neumann’s
automata can in principle compute anything, but the programs have to be pro-
vided from the outside! Who provides these descriptions? A single built-in
program F is surely not enough, because von Neumann did not introduce se-
lection. Therefore the value of the mutant program �� for problem solving is
not checked.
von Neumann solved only part of the problem. Therefore we extend problem
4.

Problem 5:What conditions are required to enable von Neumann’s automata
to grow in complexity without external interventions?

A worthwhile extension of von Neumann’s approach would be to use a pop-
ulation of automata which interact with each other and have to solve a set of
problems to survive and produce offspring. Thus I believe that for a solution
of problem 5 one needs both, Turing and Darwin. Turing provides the con-
cept of a universal automaton and Darwin provides the concept of a changing
environment metaphorically leading to natural selection.

The importance of von Neumann’s construction for today’s research has also
been emphasized by McMullin McMullin, 2001.

6. Turing’s intelligent machine

Von Neumann’s approach of using self-reproduction and the Universal Tur-
ing Machine was not the only method proposed to build intelligent machines.
In fact, von Neumann discussed the usage of artificial neural networks as an-
other possibility. Before I describe this work, it is instructive to discuss how
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Turing himself approached the problem in his article “Computing machinery
and intelligence”Turing, 1950. At first Turing defined the concept of intelli-
gence. A machine is intelligent if it passes a test Turing defined precisely: the
Turing test is an “imitation” game, played by three objects A, B and C. C is
the interrogator, A or B might be a machine. The machine passes the test if
the interrogator is not able to find out that a machine answers to his questions.
This gives our next problem.

Problem 6 [Turing]: Is it possible to create machines which pass the Turing
test?

Turing believed that the answer to the above question is positive and pro-
posed a method to construct such a machine. It is described in the section
“Learning Machines” of his article Turing, 1950. Turing’s proposal seems to
be almost unknown, although it is contained in this very famous article. I
find it very fascinating. The arguments brought forward by Turing have been
used a number of times in artificial intelligence research, but obviously without
knowing that Turing already formulated them.

“As I have explained, the problem is mainly one of programming. Estimates
of the storage capacity of the brain vary from ���� and ����. I would be sur-
prised if more than ��� was required to satisfactory playing of the imitation
game . . . At my present rate I produce about a thousand digits of program a
day, so that about sixty workers, working steadily through the fifty years might
accomplish the job, if nothing went into the wastepaper basket. Some more
expeditious method seems desirable.”

Turing did not try to formalize a possible solution to problem 6. Any pro-
gram passing the test will do. It is the efficiency problem which leads Turing
to consider natural organisms, in this case the human mind. “In the process
of trying to imitate an adult mind we are bound to think a good deal about
the process which has brought it to the state that it is in. We may notice three
components:

(a) The initial state of the mind, say at birth,
(b) The education to which it has been subjected,
(c) Other experience

Instead of trying to produce a program to simulate the adult mind, why
not rather try to produce one which simulates the child’s?. . . . We have thus
divided our problem into two parts, the child programme and the education
process. These two remain very closely connected. We cannot expect to find
a good child machine at the first attempt. . . There is an obvious connection
between this process and evolution, by the identifications
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Structure of the child machine = hereditary material
Changes of the child machine = mutations
Natural selection = judgment of the experimenter

One may hope,

however that this process will be more expeditious than evolution. The
survival of the fittest is a slow method for measuring advantages. . . Opinions
may vary as to the complexity which is suitable in the child machine.
One might try to make it as simple as possible consistently with the
general principles. Alternatively one might have a complete system of
logical inference programmed in.”

Turing reported: “I have done some experiments with one such child
machine, but the teaching method was too unorthodox for the experi-
ment to be considered really successful.”

The imitation game is the final test, one needs some intermediate
goals. “We may hope that machines will eventually compete with men
in all purely intellectual fields. But which are the best ones to start
with?. . . Many people think that a very abstract activity, like the playing
of chess, would be the best. It can also be maintained that it is best to
provide the machine with the best sense organs that money can buy, and
then teach it to understand and speak English.”

Today chess playing has been solved by brute force programming.
This solution is feasible due to the strict rules of chess that enable fast
and efficient game tree search. The progress in games like GO is much
slower. But we are still left with the language understanding problem.

Problem 7 [Turing]: Is it possible to create a machine which can be
taught to understand English?

Turing’s proposal belongs to the “copy the evolution” approach. But
his evolution does not start with a cell, but with a well-designed child.
Turing’s approach is very informal, he believed that he could program
an intelligent system using about ��� bits. I call this attitude the pro-
grammer’s approach. The system is programmed without a theory. One
just assumes that anything can be programmed. This attitude seems to
be dominant today. For Turing evolution is just a technique to shorten
the programming time.

7. What can be computed by an artificial neural network?

We now turn back to von Neumann and his approach to machine intel-
ligence. In contrast to Turing, von Neumann works more like a natural
scientist. He tries to formalize solution strategies. Thus his solutions
are not finished programs, but theories.
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In 1948 formal neural networks were already very popular in the re-
search community because of the work of McCulloch and Pitts. Von
John von Neumann, 1954, investigated the power of neural networks
in his famous talk “The general and logical theory of automata”. In the
section “Formal Neural Networks” von Neumann notes: “The McCulloch-
Pitts result� proves that anything that can be exhaustively and unam-
biguously described, anything that can be completely and unambigu-
ously put into words, is ipso facto realizable by a suitable finite neural
network. . . Thus the remaining problems are these two. First, if ascer-
tain modes of behavior can be effected by a finite neural network, the
question still remains whether the network can be realized within a prac-
tical size. . . Second, the question arises whether every existing modes of
behavior can be put completely and unambiguously into words. . .

There is no doubt that any special phase of any conceivable form
of behavior can be described completely and unambiguously in words.
This description may be lengthy, but it is always possible. . . It is, how-
ever, an important limitation, that this applies only to every element sep-
arately, and it is far from clear how it will apply to the entire syndrome
of behavior.”

Von Neumann then discusses more specifically the concept of iden-
tification of analogous geometrical entities. He takes as example the
concept of a triangle.

“There is no difficulty in describing how an organism might be able to
identify any two rectilinear triangles, which appear on the retina, as be-
longing to the category “triangle”. There is also no difficulty in adding
to this, that numerous other objects, will also be classified and identified
as triangles — triangles whose sides are curved, triangles whose sides
are not full drawn . . . This, in turn, however constitutes only a small
fragment of the more general concept of analogy. Nobody would at-
tempt to describe and define within any practical amount of space the
general concept of analogy which dominates our interpretation of vi-
sion. There is no basis for saying whether such an enterprise would
require thousands or millions or altogether impractical numbers of vol-
umes. Now it is perfectly possible that the simplest and only practical
way actually to say what constitutes a visual analogy consist in giving
a description of the connections of the visual brain.”

Problem 8 [von Neumann]: Can an artificial neural network be
designed which gives similar results on visual problems as the human
brain ?
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Turing also used an “analysis” of the human brain in order to show
that an intelligent machine can be programmed in ��� bits. He wrongly
assumed that the performance of the brain can be characterized by its
number of neurons, about ���. He did not consider the interconnection
structure as relevant. The only problem left to him is to obtain this
program of ��� digits. Von Neumann is much more careful. It is not the
number of neurons which matters, but their interconnection structure.
Today we know that even the interconnection structure is not sufficient
to define uniquely how the neurons process the visual input. We need to
know the dynamic interaction of all the neurons involved.

8. Limits of computing and common sense

I consider von Neumann’s discussion about computability extremely
important. The limitations of computing are given by the finiteness of
the resources, in space and in time! Implicitly von Neumann points out
that finiteness is not enough, we need reasonable time and reasonable
space in our real world. The finiteness of our world puts an upper limit
to the largest program which can be computed (this is von Neumann’s
length of the chain of reasoning mentioned earlier).

The theory of computability lead to the development of complexity
theory. It is still a very lively research area, I just mention some basic
results. One of the most important problem in computer science is the
Ptime versus NPtime question: given a problem whose solution can be
verified in polynomial time, is there an algorithm which actually finds
such a solution (this means in polynomial time according to the size of
the input.)? If both conditions can be proven, we have a problem from
class P, if only the first condition is fulfilled we have an NP problem.

This basic classification has been refined in a number of ways. I just
mention the inclusion

������� � ����	
�� � 	���� � �	���� � 	�	
�� � �	���� � �

Polynomial time means � � �����, exponential time � � �����. But
if � is very large, even ����� can be a very large number, meaning that
the problem cannot be computed in reasonable time. The largest mean-
ingful value of � has been computed several times, using the finiteness
of the universe and the laws of physics. One of the first to compute
explicitly the upper limit was Bremerman M-uhlenbein, 1996.
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Bremerman’s bound: No data processing system, whether artificial
or living, can process more than � � ��	
 bits per second per gram of its
mass.

Bremerman used this bound to calculate the total number of bits pro-
cessed by a hypothetical computer the size of the earth within a time
period equal to the estimated age of the earth. He computed ���� bits.
I shall call this number Bremermann’s limit. Programs which are finite,
but require more than ���� steps for solving, are no solutions. This im-
plies that the mathematical class of finite programs has to be divided
into those below Bremerman’s limit and above Bremerman’s limit.

Von Neumann had serious doubts that complex behaviors like the
concept of analogy can be described by a reasonable number of words,
meaning that the description can be read and processed in a lifetime.
Despite the warning issued by von Neumann there have been many at-
tempts to put so much knowledge into a machine that it could behave
intelligently. The earliest proposal was made in 1958 by McCarthy in
his article “Programs with common sense”McCarthy, 1959�. The most
recent effort was that by Lenat, 1995. With a team of up to 10 people
he tried to code “common sense” knowledge into a rule-based database.
After almost 10 years of effort, he was still far away from the goal,
formulated as the next problem.

Problem 9 [McCarthy,Lenat]: Is it possible to put so much knowl-
edge into a computer, that it is able to read a newspaper and improve
itself from thereon?

Looking back to von Neumann’s discussion, I believe that the an-
swer to this question is negative. I do not recommend to work on this
problem, because proving that something is impossible is very difficult.
Instead I recommend a sub-problem, formulated by Shannon, 1953, in
his paper “Computers and Automata”.

Problem 10 [Shannon]: Can we organize machines into a hierarchy
of levels, as the brain appears to be organized, with the learning of the
machine gradually progressing up through the hierarchy?

Hierarchy is used by Shannon very informally. He means levels of
abstractions. Each level might use a different calculus. The machine
should be able to do inference on a lower level after a limited number of
examples. This feature should then be used for learning at the next level.
Up to now there are no convincing theories how to solve this problem.
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9. A logical theory of adaptive systems

In the paper “Outline for a Logical Theory of Adaptive Systems”
Holland, 1970b, tried to continue the scientific endeavor initiated by
von Neumann. Holland wrote: “The theory should enable to formulate
key hypotheses and problems particularly from molecular control and
neurophysiology. The work in theoretical genetics should find a natural
place in the theory. At the same time, rigorous methods of automata the-
ory, particularly those parts concerned with growing automata should
be used.”

Thus Holland’s proposal is the first attempt to work on our problem
2. It tries to combine being, acting, developing, and evolving. This is so
important that I will describe the proposal in detail. Holland’s emphasis
(like von Neumann‘s) is foremost on theories and systems, he does not
claim to solve grand challenge applications with the proposed methods.
This can be tried after the theories have been developed.

“Unrestricted adaptability (assuming nothing is known of the envi-
ronment) requires that the adaptive system be able initially to gener-
ate any of the programs of some universal computer. . . With each gen-
eration procedure we associate the population of programs it gener-
ates;. . . In the same vein we can treat the environment as a population
of problems.” It is especially the last sentence which relates Holland’s
ideas to Darwin’s.

Now let us have a closer look at Holland’s model. First, there is a
finite set of generators (programs) ���� � � � � ���. The generation proce-
dure is defined in terms of this set and a graph called a generation tree.
Each permissible combination of generators is represented by a vertex
in the generation tree. Holland now distinguishes between auxiliary
vertices and main vertices. Each auxiliary vertex will be labeled with
two numbers, called the connections and disconnection probabilities.
This technique enables to create new connections or to delete existing
connections. Each main vertex is labeled with a variable referred to
as density. The interested reader is urged to read the original paper (
Holland, 1970b).

Holland claims that from the generation tree and the transition equa-
tions of any particular generation procedure, one can calculate the ex-
pected values of the densities of the main vertices as a function of time.
Holland writes: “From the general form of the transition equations one
can determine such things as conditions under which the resulting gen-
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eration procedures are stationary processes.” Thus Holland already
tried to formulate a stochastic theory of program generation! This is
an idea still waiting to be explored.

The above process is not yet adaptive. Adaptation needs an environ-
ment posing problems. Holland’s extension is similar in spirit to von
Neumann’s self-reproducing automata. Holland introduces supervisory
programs which can construct templates which alter the probabilities
of connections. Templates play the role of catalysts or enzymes. Thus
program construction is also influenced by some kind of “chemical re-
actions.”

Holland further proposes that the environment is treated as a popula-
tion of problems. These problems are presented by means of a finite set
of initial statements and an algorithm for checking whether a purported
solution of the problem is in fact a solution. “When we consider the in-
teraction of an adaptive system with its environment we come very soon
to questions of partial solutions, subgoals etc. The simplest cases occur
when there is an a priori estimate of the nature of the partial solution
and a measure of the closeness of its approach to the final solution.”

Holland then observes that a rich environment is crucial for the adap-
tation. “Mathematical characterization of classes of rich environments
relative to a given class of adaptive systems constitutes one of the major
questions in the study of adaptive systems. . . . An adaptive system could
enhance its rate of adaptation by somehow enriching the environment.
Such enrichment occurs if the adaptive system can generate subprob-
lems or subgoals whose solution will contribute to the solution of the
given problems of the environment.”

It is very interesting to note that Holland distinguished three kinds
of programs – supervisory programs, templates, and programs for the
problem solution. The supervisory programs use a probabilistic gen-
eration tree to generate programs, the templates are used as catalyst to
“skew” the generation process. Holland perceived a hierarchy of pro-
grams Holland, 1970a:

1 productive systems – the generator system is able to produce other
generators

2 autocatalytic systems – the generator system produces generators
which are used in the construction

3 self-duplicating systems – the generator system produces dupli-
cates of itself
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4 general adaptive systems – has still to be defined

“The beginning of such a definition (of adaptive systems) lies in the
following consideration: with the help of concepts such as autocat-
alytic and self-duplicating generator systems it is possible to define such
concepts as steady-state equilibria and homeostasis for embedded au-
tomata. . . If the generator system for such an automaton has a hierarchi-
cal structure, then a small change in structure produces a small change in
proportion to the “position” of the change in the hierarchy. . . By making
changes first at the highest level and then at progressively lower levels of
the hierarchy, it should be possible to narrow down rather quickly to any
automaton in this category having some initially prescribed behavior.”

I believe that Holland’s very first proposal is a very good starting
point for future research. It puts forward many ideas not yet contained
in current research. Holland’s proposal to use stochastic systems, their
steady-state equilibria and homeostasis is in my opinion still a very
promising approach for solving difficult problems by evolutionary com-
putation. But as it often happens in science, understanding these con-
cepts in a solid theory is more difficult than anticipated. I will discuss
this approach with simpler models in the next sections. Holland itself
never implemented his general model. Therefore the next problem is
still open.

Problem 11 [Holland]: Try to implement Holland’s model and prove
its usability by a convincing application.

Holland never implemented the proposed system. After working about
eight years on this theory he turned to a simpler evolution model, in fact
the Modern Synthesis mentioned before. The environment is hidden
in a fitness function. Evolution reduces then to an optimization prob-
lem. This research lead to genetic algorithms. Holland believed that
his genetic algorithms have an almost optimal adaptation rate taking
into account the information which is available (Holland, 1973; Hol-
land, 1992). But we will prove in Section 13 that it is our Boltzmann
distribution algorithm which fulfills his criterion for optimality!

Nobel laureate Gell-Man criticized at the Santa Fe institute, that ge-
netic algorithms are unsuited to investigate self-organized evolution, be-
cause they use a simple fitness function for a genotype. Therefore Hol-
land, 1992, later developed Echo. Unfortunately Echo lacks the theoret-
ical foundation of Holland’s first proposal. Therefore I will not discuss
it in this paper.



Towards a Theory of Organisms and Evolving Automata 19

10. The �-Calculus for creating artificial intelligence

In another chain of reasoning we might ask ourselves: Maybe there
is a way of creating human like intelligence without copying nature
too much. Instead of starting with the Universal Turing Machine, we
can start with the calculus developed by Church and later called the
�-calculus. It was implemented as part of the LISP language by John
McCarthy. The �-calculus has the same computational power as the
Turing machine, but it is based on substitution. LISP is an interpreta-
tive language, thus the LISP environment can be seen as a very complex
self-reproducing automaton.

For the next problem I recommend to read Minsky’s survey “Steps
toward artificial intelligence” (Minsky, 1961). I only cite: “It is my
conviction that no scheme for learning, or for pattern recognition, can
have very general utility unless there are provisions for recursive, or at
least hierarchical, use of previous results. We cannot expect a learning
system to come to handle very hard problems without preparing it with
a reasonable graded sequence of problems of growing difficulty. The
first problem must be one which can be solved in reasonable time with
the initial resources. The next must be capable of solution in reason-
able time by using reasonably simple and accessible combinations of
methods developed in the first, and so on.”

In my opinion we have even to go a step further. There seems to
be no big gain if the set of problems is hand crafted by a human. The
program itself should create some of the sub-problems. We now have
to formulate a task for this model. I rephrase a question from Shannon,
1953

Problem 12 [Shannon]: Can we program a digital computer so that
eventually 99 percent of the orders it follows are written by the computer
itself and which solves difficult problems (e.g performs comparable to
the human eye or understands the English language?)

I added the two applications in brackets, because Shannon forgot in
his question to specify the applications to be solved. But without an
application the above problem can easily be solved by a program which
randomly generates instructions.

LISP was the first language used by Koza for Genetic Programming.
But within the framework of our discussion, Koza’s model is too re-
stricted. It works only for one problem at a time. For each problem
we need examples describing the input-output relations of the problem
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to be solved. The population of solutions is changed according to the
mechanisms used by genetic algorithms.

11. Probabilistic logic

All problems up to now have been formulated in the very early days
of electronic computers. For the early researcher a possible solution of
each of these problems was either a theory or a successful application
in pattern recognition or language understanding.

Furthermore, in order to develop and understand the model, either
classical mathematics or abstract automata defined by a flexible lan-
guage have been used. Several times stochastic systems have been pro-
posed for the mathematical analysis.

Von Neumann explicitly expressed the feeling, having in mind artifi-
cial automata as model organisms, that a new theory is urgently needed
(von Neumann, 1954): “This new system of formal logic will move
closer to another discipline which has been little linked in the past with
logic. This is thermodynamics, primarily in the form it was received
from Boltzmann, and is that part of theoretical physics which comes
nearest in some of its aspects to manipulating and measuring informa-
tion. Its techniques are much more analytical than combinatorial.”

Von Neumann’s prediction has become true. Probability has been
extended to probabilistic logic (Jaynes, 1957).

11.1 Von Neumann’s probabilistic logics

To my knowledge von Neumann was the first to use the term proba-
bilistic logic in his paper “Probabilistic Logics and the Synthesis of Re-
liable Organisms from Unreliable Components”von Neumann, 1956. I
shortly describe his model.

“With every basic organ is associated a number � such that in any
operation the organ will fail to function correctly . . . Suppose the organ
receives a stimulation at time t and no later ones. Let the probability
that the organ is still excited after s cycles be denoted by ��. Then the
recursion formula

���� � ��� ���� � ���� ���

is valid.” It is easy to show that the equation has the solution

���� � ��� ��������� � �

�
� �

�

�
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Therefore von Neumann concludes that �� � ��� for ���, mean-
ing in von Neumann’s opinion that the component functions randomly.
But let us now investigate the problem in a precisely defined automaton
setting. The automaton has two states ��� ��� At each step the automa-
ton changes with probability � from the given state to the opposite state.
If we observe the automaton, we would see that the automaton changes
states only after ��� steps on the average. Such a behavior is very differ-
ent from that of a random automaton, which changes states at each step
with probability 0.5. But both automata have a limit distribution with
�� � ���. The difference between the distributions becomes apparent
if higher order marginal distributions like ����� ����� are considered,
where �� denotes the state of the automaton at step �.

Von Neumann’s analysis did not capture the reliability problem. There-
fore his “solution” to the problem of unreliable components did not have
any practical value. Von Neumann approached probabilistic logic from
the most difficult point of view, namely the stochastic view. This means
to define logic with time dependent dynamics! It is much easier to de-
fine probabilistic logic from the logic point of view, without time and
dynamics. This is discussed next.

11.2 The conditional probability computer

As early as 1956 Uttley proposed the conditional probability com-
puter. It consists of n binary input units � � ���� � � � � ���. Internally
all possible conditional probabilities ���	�� are computed, where � and
� are disjoint sub-vectors of �. The relation between probability theory
and logic is simple, but fundamental: identify a conditional probability
expression with a clause in propositional calculus. For simplicity let �
and � denote terminal symbols.

���������� �	� Let � 
 ���� 
 � denote the probability of � Then
������ �� �

�
��	��
�

���� �� defines the univariate marginal distribu-
tions of variable �. Let �� be a sub-vector of �. Then the marginal
distribution is defined as ����� �� �

�
��	��
�

���� �� Let �� � be dis-
joint sub-vectors of �. Then conditional probabilities are defined as
���	�� � ���� ������� for ���� � �.

A probabilistic statement that � is true given � is a conditional prob-
ability with “truth” value � 
 � 
 �

���	�� � �



22

As Uttley observed, a conditional probability computer would allow
to compute all logical inferences, if we identify “from � follows �” by
the condition ���	�� � ���. The drawback of this proposal is that it
needs �� � � units and also exponential space. There have been several
attempts to use less units and also to deal with the case of incomplete
input. Most notably are the efforts of Minsky and Selfridge, and in-
dependently by Papert (both papers published in Cherry, 1961. In both
papers the assumption is made that all ��’s are independent. This is very
unrealistic. It needed a long time to solve this problem.

11.3 Modern probabilistic logic

Modern probabilistic logics can be seen as a candidate for von Neu-
mann’s new system of formal logic. It connects probability theory with
logic by assigning probabilities to clauses, e.g. ���	�� � ��	. Let � be
the number of binary concepts. In addition let a number of clauses be
specified. The specifications are called the constraints.

For any specification we have a set of probability models (P-models)
which can either be empty (i.e the constraints violate the laws of proba-
bility), contain a single P-model, or contain a number of P-models (the
specification is incomplete.) If the P-model is unique, we can compute
the probability of an arbitrary propositional sentence by summing up
probabilities. The probability of a conditional statement ���	�� can be
obtained by dividing the probability ������ by the probability ����.

But unique P-models are unrealistic. The specification has to set all
of the �� � � variables defining the distribution. Consequently, for in-
complete specifications the missing information must be added by some
automatic completion procedure. This is achieved by the maximum en-
tropy principle. The entropy of a distribution is defined by

���� � �
�



���� 
������� (1.1)

The maximum entropy principle formulates the principle of indiffer-
ence. If no constraints are specified, the uniform random distribution is
assumed.
Maximum entropy principle: Find the maximal entropy distribution
for ���� which satisfies the given marginals.

This principle has a long history in physics and probabilistic logic.
The interested reader is referred to Jaynes, 1957. The following theorem
holds (Cover and Thomas, 1989).
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����� �	� If the given constraints are consistent, then there exists
a unique distribution ���� of maximum entropy.

Consistent means that the marginal distributions derived from the
constraints fulfill all the constraints which can be derived from the laws
of probability theory. This means the constraints should not contradict
each other. The most popular algorithm to compute the maximum en-
tropy distribution is called iterative proportional fitting. To give the
reader a flavor of the theory we present a simple example.
Example: Given the three expressions ’having a full-time job’ ��, ’work-
ing in a technical domain’ � and ’male’ �, the following information is
specified

	 ��	��� � ����

	 ��	�� � ����

	 ��	�� ��� � ����

Then the maximum entropy solution gives, for instance 	 ��	�� ��� �
���. 	

The maximum entropy principle solves the incomplete data problem.
But unfortunately iterative proportional fitting scales exponentially in
the number of variables. Thus a simpler technique has to be found. Such
a method has recently been discovered. It uses the principle of condi-
tional independence. Its graphical representation is called a graphical
model. For our discussion the following definition is sufficient.

���������� �	� A graphical model is a graph G, where two variables
are connected by an edge if they appear together in one constraint.

The new method tries to find a factorization of the distribution. There
is lots of literature available how this can be done, we just mention Lau-
ritzen, 1996. The algorithm computes cliques and generates a junction
tree  . A junction tree is an undirected tree the nodes of which are clus-
ters of variables. The clusters satisfy the junction property: For any two
clusters � and ! and any cluster " on the unique path between � and ! in
the junction tree the relation

� � ! � " (1.2)

is true. The edges between the clusters are labeled with the intersection
of the adjacent clusters; we call these labels separating sets or separa-
tors.
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The modified iterative proportional fitting algorithm uses only the
computed clusters of the factorization as marginals. This algorithm pro-
duces exactly the same result as the standard iterative proportional fit-
ting. If all factors of the factorization have a number of variables which
is independent of the global number �, then the algorithm is polynomial.

The crucial question remains: Which graphical models lead to bounded
factorizations? We give here just one negative result M-uhlenbein and
Mahnig, 2003:


����� �	� Graphical model models which are 2-D grids lead to
factorizations which have at least one factor with


� variables. Thus

for these problems the computational amount to compute the maximum
entropy distribution is still exponential.

12. Stochastic analysis of cellular automata

Another new application of stochastic systems and probabilistic logic
are cellular automata. The stochastic analysis of cellular automata was
already advocated by Wolfram, 1994, in his paper “Twenty Problems in
the Theory of Cellular Automata”. The next problem combines Wol-
fram’s problems ten and eleven.

Problem 13 [Wolfram]: What is the correspondence between cel-
lular automata and stochastic systems, and how are cellular automata
affected by noise and other imperfections?

We have worked on this problem. In order to provide the reader with
more detailed information, I will discuss a simple example. It is taken
from (M-uhlenbein and H-ons, 2002).

12.1 The nonlinear voter model

We consider a model of two species (or two opinions). For the spatial
distribution we assume a one-dimensional stochastic cellular automaton
(SCA) defined by a circle of � cells. Each cell is occupied by one in-
dividual, thus each cell is characterized by a discrete value #� � ��� ��.
We set ���� �� �� and �� �� ��. The state of cell �� at time ��� is de-
fined by the states of cells ����, ��, ���� at time �. The state transitions
of the voter model depend only on $��� � #�������#�����#������. This
class of automata is called totalistic. For the stochastic voter model the
transitions are defined as follows.
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���� ������� �� � �������

3 �� �

2 �� �

1 �

0 �

��#� � �	$����� denotes the transition probability given $. � is a
small stochastic disturbance parameter. The model is defined by %. If
% & ��� one speaks of positive frequency dependent invasion. This
model is also called the majority vote model, because the individuals
join the opinion of the majority in the neighborhood. For % � ��� the
model is called a negative frequency dependent invasion process. In this
case the minority opinion has more weight. The deterministic cellular
automata are given by � � � and % � �� �. The voter model has been
intensively investigated by micro simulations.

We will first analyze the voter model by the theory of Markov chains.
Let � � ���� � � � � ��� denote a vector, �� � �� � ��� �� �� � � � � ���. We
use the following conventions. Capital letters � denote the names of
variables, lower case letters �� assignments. The distinction between
the name of a variable and an assignment is essential for the definition
of marginal distributions. When there cannot be a confusion between
name or assignment, we will use lower case letters and abbreviations.
For notational simplicity we will assume binary variables �� � ��� ��.
Important definitions will be given for the general case.

The time evolution of the distribution is given for one step by the
equation

���� �� �� �
�

�

���� �� �	��� ������� �� (1.3)

���� � ����� �� �	��� ��� defines a �� � �� matrix.

���������� �	� The stochastic process is a Markov process if ���� is
independent of �.

The stochastic voter model is a Markov process. For a Markov process
we have

���� �� � � ����� �� (1.4)

For � & �� % & � we have ���	��� � �. Therefore the theorem of
Frobenius-Perron can be applied. The largest eigenvalue of the matrix
is 1. Its unique eigenvector defines the stationary distribution. Thus we
have the following theorem.
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����� �	� The stochastic voter model with � � � has a unique
limit distribution. It is given by the left eigenvector belonging to the
eigenvalue �� � �.

It is numerically impossible to analyze a large cellular automaton by
standard Markov techniques. It takes an exponential amount of compu-
tation to compute the exact stationary distribution.

We propose a different approach. We approximate the distribution
���� �� by distributions using a small number of parameters. For this
approximation we use the theory of graphical models mentioned before.

12.2 Stochastic analysis of one dimensional SCA

For notational convenience we set '� �� �������, and #� �� �����. We
will now derive difference equations involving marginal distributions
with a few number of parameters. We obtain from the definition of the
voter model for the von Neumann neighborhood in 1-D

��'�� �
�

���������

��'�	#���� #�� #������#���� #�� #���� (1.5)

��'�� gives the probability of cell i containing a 1. The conditional dis-
tribution ��'�	#���� #�� #���� is uniquely defined by the transitions of the
cellular automaton, in our case by the voter model with parameters �
and %. But on the right side tri-variate marginals appear. For these we
obtain

��'���� '�� '���� �
�

�����������������

��'���� '�� '���	#���� � � � � #����(1.6)

��#���� #���� #�� #���� #����

Thus now marginal distribution of size 5 enter. In order to stop this ex-
pansion we approximate the marginal distributions of order 5 by marginal
distributions of order 3. From the definition of the SCA we obtain

��'���� '�� '���	#���� #���� #�� #���� #���� � ��'���	#���� #���� #��(1.7)

��'�	#���� #�� #������'���	#�� #���� #����
From the theory of graphical models we obtain the approximation

��#���� � � � � #���� � ��#���� #�� #������#���	#���� #����#���	#�� #����
(1.8)
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Inserting the last two equations into equation (1.6) gives the differ-
ence equations for the tri-variate marginal distributions. The approxi-
mations have to fulfill constraints derived from probability theory.�

���������

��#���� #�� #���� � �

�
���

��#���� #�� #���� �
�
���

��#�� #���� #����

In the same manner approximations of different precision can be ob-
tained. We just discuss the simplest approximation, using uni-variate
marginal distributions. Here equation (1.5) is approximated by

��'�� �
�

���������

��'�	#���� #�� #������#������#����#���� (1.9)

The approximation by univariate marginal distributions leads to �
difference equations only, but these difference equations are nonlinear.
It seems very unlikely that analytical solutions of these equations can
be obtained. For spatially homogeneous problems we have ��'�� �
��'����. In this case the probabilities do not depend on the locus of the
cell. This is the mean-field limit known from statistical physics Opper
and Saad, 2001. With ���� � ���

�
� ���� � �� �� we obtain the mean-

field equation

������ � ��������������������������%����������������%�������������
(1.10)

For � � � and % & ��� the equation has stable fix-points at � � � and
� � �. For % � ��� the equation has a stable attractors at � � ���. Thus
the mean-field limit approximation indicates a bifurcation for % � ���.
This interpretation is tempting, but in reality the relation between the
fix-points of equation 1.10 is very complicated M-uhlenbein and H-ons,
2002.

The approximation of 2-D spatial distributions is much more compli-
cated than the approximation of 1-D automata. Here the junction tree
algorithm is needed. The interested reader is referred to M-uhlenbein
and H-ons, 2002.

13. Stochastic analysis of evolutionary algorithms

The broad applicability of the new developments in probability the-
ory can be demonstrated by another example, namely evolutionary algo-
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rithms M-uhlenbein et al., 1999; M-uhlenbein and Mahnig, 2000; M-uhlenbein
and Mahnig, 2002a. This application is easier than the analysis of cel-
lular automata. The distribution remains focused because of selection.

Let a function � � X � ���� be given. We consider the optimization
problem

���� � ������ ���� (1.11)

For the solution Holland proposed in 1973 an algorithm called ge-
netic algorithm Holland, 1992. The following discussion is taken from
M-uhlenbein and Mahnig, 2003.

Genetic algorithms are defined on a microscopic level. Given two
strings, a new point is generated by recombination/crossover. A stochas-
tic analysis of a genetic algorithm requires the computation of a recur-
rence equation

���� �� �� �
�
�
�

���	��� ������� �� (1.12)

Here ���	��� �� denotes the probability for a transition from �
� to � at

generation �. Because of selection the transition probabilities are time
dependent. Vose Vose, 1999 has derived such an equation for the Sim-
ple Genetic Algorithm with proportionate selection, crossover, and mu-
tation. The computation of the crossover probabilities are especially
difficult. Since crossover operates on two arbitrary strings � and � of
the selected population, one has to use the joint distribution ������ in
equation (1.12). But even for the binary case, the transfer matrix ���	���
is of size ��� ��. It is extremely difficult to analyze the distribution us-
ing this general equation.
Remark: Marginal distributions define schemata

For the researchers working on the theory of genetic algorithm it
is important to mention that marginal distributions are equivalent to
schema probabilities introduced in Holland, 1992. We just give an ex-
ample for � � �. Let ( � ��� �� �� �� �� define a schema. Then the
probability of the instances of schema ( in the population 	 ��� is by
definition equal to the marginal distribution ��� � �� � � �� ��. Thus
Holland’s schema analysis is nothing else than a mesoscopic analysis in
the space of marginal distributions. We prefer to use the notation com-
mon in probability theory. In fact, one of the main reasons that schema
theory did not come very far is the imprecise terminology. In our meso-
scopic analysis conditional probabilities play an essential role. But the
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concept of conditional schema probabilities has not yet entered the tra-
ditional schema theory.

But let us proceed further. Equation (1.12) should not be the end
result of a mesoscopic analysis, but just the beginning. We will concen-
trate on distributions which are defined by a small number of parameters
or can be approximated by distributions with a small set of parameters.
Since we treat the marginal distributions as deterministic variables, the
mesoscopic analysis is valid for infinite populations only. Fluctuations
arising by virtue of finite populations can be investigated in principle,
but it is extremely difficult. Due to of the sampling theory in statis-
tics our analysis can be seen as the limit case of large finite populations
where the size goes to infinity.

A good candidate for optimization using a search distribution is the
Boltzmann distribution.

���������� �	� For ) � � define the Boltzmann distribution of a func-
tion ���� as

����� ��
*���
��
� *

�����
��

*���
�

+��)�
(1.13)

where +��)� is the partition function. To simplify the notation ) and/or
� can be omitted.

The Boltzmann distribution is usually defined as *�
����
� �+. The term

���� is called the energy and � � ��) the temperature. The Boltzmann
distribution is suited for optimization because it concentrates with in-
creasing ) around the global optima of the function. In theory, if it
were possible to sample efficiently from this distribution for arbitrary
), optimization would be an easy task.

13.1 Boltzmann selection

Our proposed algorithm incrementally computes the Boltzmann dis-
tribution by using Boltzmann selection.

���������� �	� Given a distribution � and a selection parameter �),
Boltzmann selection calculates the distribution of the selected points
according to

����� �
����*���
�

�
� ��,�*

�����
(1.14)
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Algorithm 1: BEDA – Boltzmann Estimated Distribution Algorithm

1 �� �. Generate � points according to the uniform distri-
bution ���� �� with ���� � �.

2 do �
3 With a given ����� � �, let

����� �� �
���� ���������
�

�
� ���� ���

��������
�

4 Generate � new points according to the distribution
���� �� �� � ����� ��.

5 �� �� �.
6 � until (stopping criterion reached)

We can now define the BEDA (Boltzmann Estimated Distribution Al-
gorithm). It can easily be proven that BEDA converges to the set of all
global optima if

�
���)���� � � M-uhlenbein and Mahnig, 2002b.

BEDA is a conceptional algorithm, because the calculation of the dis-
tribution requires a sum over exponentially many terms. We next trans-
form BEDA into a practical algorithm. This means to reduce the number
of parameters of the distribution and to compute an adaptive schedule
for ).

13.2 Factorization of the distribution

In this section the factorization method introduced for graphical mod-
els is applied.

���������� �	� Let ��� � � � � �� be index sets, �� � ��� � � � � ��. Let ��
be functions depending only on the variables �� with - � ��. Then

���� �
��
���

������� (1.15)

is an additive decomposition of the fitness function � .

From the additive decomposition we construct a graphical model
by connecting those variables which are contained in the same sub-
function. This definition is identical to the graphical model earlier in-
troduced in probabilistic logic.
We also need the following definitions
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���������� �	�� Given ��� � � � � ��, we define for . � �� � � � � � the sets
/�, !� and 0�:

/� ��
��

���

��� !� �� �� � /���� 0� �� �� � /��� (1.16)

We set /� � �.
In the theory of decomposable graphs, /� are called histories, !� resid-

uals and 0� separators Lauritzen, 1996. In M-uhlenbein et al., 1999 we
have proven the following theorem.


����� �	�� �������������� 
������ Let ����� be a Boltzmann
distribution with

����� �
*�����

+��)�
(1.17)

and ���� �
��

��� ������ be an additive decomposition. If

!� �� � �. � �� � � � � �� /� � ���� � � � � ���� (1.18)

�. � � �- & . such that 0� � �� (1.19)

then

����� �
��

���
������	���� �

��

��� �������������

��� �������
(1.20)

The constraint defined as equation (1.19) is called the running in-
tersection property. This severe assumption is identical to the junction
property defined in equation (1.2).

The factorization theorem can be seen as a mathematically complete
schema theorem. It tells which schemata are necessary to generate the
whole distribution. The usual schema theorems describe only the evo-
lution of schemata, but not how the distribution can be generated.

With the help of the factorization theorem, we can turn the concep-
tional algorithm BEDA into FDA, the Factorized Distribution Algo-
rithm. If the conditions of the factorization theorem are fulfilled, the
convergence proof of BEDA is valid for FDA also. FDA can in principle
be used with any selection scheme, but then the convergence proof is
no longer valid. Therefore we believe that Boltzmann selection is an
essential part in using the FDA.
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Algorithm 2: FDA – Factorized Distribution Algorithm

1 Calculate �� and 	� from the decomposition of the function.
2 � � �. Generate an initial population with � individuals

from the uniform distribution.
3 do �
4 Select � � � individuals using Boltzmann selection.
5 Estimate the conditional probabilities ����� ���� � ��

from the selected points.
6 Generate new points according to ���� � � �� ���

��� ����� ���� � ��.
7 �� �� �.
8 � until (stopping criterion reached)

Since FDA uses finite samples of points to estimate the conditional
probabilities, convergence to the optimum will depend on the size of
the samples (the population size). FDA has experimentally proven to
be very successful on a number of functions where standard genetic
algorithms fail to find the global optimum. In M -uhlenbein and Mahnig,
1999 the scaling behavior for various test functions has been studied.
For recent surveys the reader is referred to M-uhlenbein and Mahnig,
2002a; M-uhlenbein and Mahnig, 2003.

13.3 Holland’s schema analysis and the Boltzmann
distribution

We now turn to the very first analysis of genetic algorithms made by
Holland Holland, 1992. We will use here Holland’s terminology. (We
remind the reader that ( defines a schema and 	 �(� �� its probability.
This is in our notation the marginal distribution ����� ��.) He derived the
following conjecture about a good population based search algorithm.

(Holland, 1992,p.88): Each (schema) ( represented in (the current
population) 1��� should increase (or decrease) in a rate proportional
to its "observed" "usefulness" �2����� �2��� (average fitness of schema (
minus average fitness of the population)

/	 �(� ��

/�
� � �2����� �2����	 �(� �� (1.21)

Holland claimed that the simple genetic algorithm behaves according
to the above equation. This is not true. Instead we have the surprising
result:
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����� �	�� The Boltzmann distribution ���� �� � *������+���� with
	 �(� �� �

�
	�	��
�

���� �� fulfills Holland’s equation (1.21).

Proof: Taking the derivative we easily obtain

���� ��

/�
� ���� �������� ������ (1.22)

Let ( define a schema, �� the corresponding marginal distribution. Then

/	 �(� ��

/�
�

/����� ��

/�
� ����� ��

�
� �

����� ��

�
	�	��
�

���� �������� ������

�
	

� 	 �(� ��� �2����� �2����

Thus the Boltzmann distribution with the fixed annealing schedule
)��� � � fulfills Holland’s equation. According to Holland’s analysis
34
 with this schedule should be an almost optimal algorithm!

I hope this short discussion demonstrates that we now have a solid
theory of genetic algorithms. But we are still far away from Holland’s
“logical theory of adaptive systems.t’t’

14. Stochastic analysis and symbolic representations

We will use the stochastic analysis on more and more complex mod-
els. Finally we hope to analyze Holland’s general model with the stochas-
tic techniques presented above. Cellular automata can be seen as special
cases of Holland’s model. All automata perform in the same way, that
is we have just one generator. Instead of a tree we have a one or two
dimensional space. Selection can be modeled between neighboring au-
tomata. The reader has noticed that the stochastic analysis of cellular
automata is already fairly difficult. This indicates that the analysis of
Holland’s model will be really difficult.

But in order to make progress in creating more intelligent machines,
still another big step has to be done. From the discussions of our pre-
vious problems it becomes apparent that we have to combine stochas-
tic analysis with symbolic representations. This problem was already
stated by Wolfram Wolfram, 1994 in the context of cellular automata.

Problem 14 [Wolfram]: What higher-level descriptions of informa-
tion processing in cellular automata can be given?

“One approach is statistical in nature. It consists in devising and de-
scribing attractors for the global evolution of cellular automata. All
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initial configurations in a particular basin of attraction may be thought
of as instances of some pattern, so that their evolution towards the same
attractor may be considered as a recognition of the pattern . . . The con-
struction of attractors for more general problems is likely to be very
difficult. An attempt in this direction might be made considering basis
of attraction as sets of sequences corresponding to a particular formal
language.

Another approach is to use symbolic representations for various at-
tributes or components of cellular automaton configurations. . . perhaps
data could be represented by an object like a graph, on which transfor-
mations can be performed in parallel. . . it seems likely that a radically
new approach is needed.”

The last statement seems to be correct. But to my knowledge Wol-
fram did not publish any proposal how to solve the problem.

15. Conclusion

In my opinion, the big problems in the theory of organisms and artifi-
cial automata have been recognized from the very beginning. In biology
it was Darwin, in electronic computation von Neumann, Turing, Shan-
non. Some of the proposals for solving the challenging problems have
been far too optimistic, other proposals have not been implemented be-
cause the implementation was too difficult. Therefore subsequent de-
velopments have lead to a fragmentation and specialization of research.
This is true for biology as well as for computer science. Today evo-
lutionary computation is divided into genetic algorithms, evolutionary
algorithms, genetic programming, artificial life, and evolvable hardware
– not to mention more specialized models like ant colony optimization,
memetic algorithms, or classifier systems. But each model itself is too
simple to solve the problems presented.

The challenging problems have faded away, less difficult problems
and simpler models got into the center of attention. An exception is
the problem of all problems: “Can we produce artificial intelligence
comparable to or even surpassing human intelligence?” Researchers
have often been too optimistic about the time scale to solve this problem.
Whereas in the 60t’s many researcher’s predicted a solution in about 10
years, the time scale has now been increased to about 50 years! In my
opinion, however, there will be no progress at all, unless not some of
the sub-problems like the ones presented here will be solved.
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Notes
1. In addition I recommend the essays of Stephen J. Gould.
2. McCulloch-Pitts had proven that their formal neural networks are equivalent to a Turing machine.
3. The discussion of the talk started with a remark of Bar-Hillel: “Dr. McCarthy’s paper belongs in the

Journal of Half-Baked Ideas, the creation of which was recently proposed by Dr. I.J. Good.”
4. Whether this very precise value is justified by logical arguments is still a subject of hot discussions.
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