
Chapter 1
Computational Intelligence: The Legacy of
Alan Turing and John von Neumann

Heinz Mühlenbein

Abstract In this chapter fundamental problems of collaborative computa-
tional intelligence are discussed. The problems are distilled from the semi-
nal research of Alan Turing and John von Neumann. For Turing the creation
of machines with human-like intelligence was only a question of program-
ming time. In his research he identified the most relevant problems con-
cerning evolutionary computation, learning, and structure of an artificial
brain. Many problems are still unsolved, especially efficient higher learn-
ing methods which Turing called initiative. Von Neumann was more cau-
tious. He doubted that human-like intelligent behavior could be described
unambiguously in finite time and finite space. Von Neumann focused on
self-reproducing automata to create more complex systems out of simpler
ones. An early proposal from John Holland is analyzed. It centers on adapt-
ability and population of programs. The early research of Newell, Shaw, and
Simon is discussed. They use the logical calculus to discover proofs in logic.
Only a few recent research projects have the broad perspectives and the am-
bitious goals of Turing and von Neumann. As examples the projects Cyc,
Cog, and JANUS are discussed.

1.1 Introduction

Human intelligence can be divided into individual, collaborative, and collec-
tive intelligence. Individual intelligence is always multi-modal, using many
sources of information. It developed from the interaction of the humans
with their environment. Based on individual intelligence, collaborative in-
telligence developed. This means that humans work together with all the
available allies to solve problems. On the next level appears collective in-
telligence. It describes the phenomenon that families, groups, organizations
and even entire societies seem to act as a whole living organism.

The importance of interactions between higher animals has been rein-
forced by the discovery of mirror neurons. These are neurons which fire both
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when an animal acts and when the animal observes the same action per-
formed by another ( especially conspecific) animal. The neurons have been
observed in primates and are believed to exist also in humans and in some
birds. The function of the mirror system is still a subject of much speculation.
To date no plausible neural or computational models have been developed
to explain how mirror neurons support the cognitive functions.

In my opinion the most impressive collaborative computational intel-
ligence examples developed so far are the search machine Google and
Wikipedia. In both systems the interaction human-computer plays an im-
portant role. Google is a gigantic storage system with an impressive fast
search engine. It remains the task of the user to filter out the important in-
formation from the search results.

Wikipedia tries to make the dream of the Age of Enlightenment become
true, to develop an encyclopedia describing all human knowledge and mak-
ing it accessible to all humans. Both systems use pure text driven search.
More intelligent search methods have been not successful so far. Despite the
many efforts no computational system is approaching the level of human
intelligence.

Today computational intelligence is partitioned into many specialized
and separate research areas. This was not always the case. The aim of this
chapter is to recall the broader issues and research goals of computational
intelligence. To this end the seminal research of Alan Turing and John von
Neumann is reviewed in detail. Their proposals discuss many areas of com-
putational intelligence necessary to create automata with human-like intel-
ligence.

Right at the beginning of electronic computers researchers looked into na-
ture for ideas to solve difficult problems or even create what is called today
artificial intelligence. Because of the lack of understanding the functioning of
natural systems, the research had to be largely experimental. This was al-
ready pointed out by John von Neumann (25).

Natural organism are, as a rule, much more complicated and subtle, and there-
fore much less well understood in detail, than are artificial automata. Nevertheless,
some regularities, which we observe in the organization of the former may be quite
instructive in our thinking and planning of the latter; and conversely, a good deal of
our experiences and difficulties with our artificial automata can be to some extend
projected on our interpretations of natural organisms.

In this chapter I will first review the work of Alan Turing, described in his
famous seminal paper ”Computing Machinery and Intelligence” (23) and in
the not so well known paper ”Intelligent Machinery” (24). Turing’s thoughts
about learning, evolution, and structure of the brain are described.

Then I will discuss the most important paper of John von Neumann con-
cerning our subject ”The General and Logical Theory of Automata” (25).
John von Neumann’s research centers about artificial automata, computability,
complexity, and self-reproduction

All three papers have been written before the first electronic computers
became available. Turing even wrote programs for paper machines. As third
example I will describe the proposal of John Holland (10). The simplifica-
tion of this proposal to optimization lead later to the famous genetic algo-
rithm (11). The historical part ends with a discussion of the early research of
Newell, Shaw and Simon.
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I will first discuss this early research in detail, without commenting it us-
ing todays knowledge. Then I will try to evaluate the proposals in answering
the following questions

• What are the major ideas for creating machine intelligence?
• Did the proposals lack important components we see as necessary today?
• What are the major research problems of the proposals and do exist solu-

tions today?

Then two recent large projects are shortly summarized. The goal of the
project Cyc is to specify in a well-designed language common sense knowledge
The Cog project tried to build a humanoid robot that acts like a human. In addi-
tion the architecture of our hand-eye robot JANUS is described. It has a mod-
ular structure similar to the human brain.

This chapter is a tour de force in computational intelligence. It requires
that the reader is willing to contemplate fundamental problems arising in
building intelligent machines. Solutions are not given. I hope that the reader
finds interesting research problems worthwhile to be investigated. This pa-
per extends my research started in (15).

1.2 Turing and machine intelligence

The first sentences of the paper ”Computing machinery and intelligence”
have become famous.

I propose to consider the question ”Can machines think?” This should begin with
definitions of the meaning of the terms ”machine” and ”think”....But this is absurd.
Instead of attempting such a definition I shall replace the question by another, which
is closely related to it and is expressed in relatively unambiguous words. The new
form of the question can be described in terms of a game which we call the imitation
game.

Turing’s definition of the imitation game is more complicated than what is
normally used today. Therefore I describe it shortly. It is played with three
actors, a man (A), a woman (B) and an interrogator (C). The object of the
game for the interrogator is to determine which of the other two is the man
and which is the woman. It is A’s objective in the game to cause C to make
the wrong identification. Turing then continues: ”We now ask the question
”What will happen when a machine takes the part of A in the game?” Will
the interrogator decide wrongly as often when the game is played as this
as he does when the game is played between a man and a woman? These
questions will replace our original ”Can machines think”.

Why did Turing not define just a game between a human and a machine
trying to imitate a human, as the Turing test is described today? Is there an
additional trick in introducing gender into the game? There has been quite
a lot of discussions if this game characterizes human intelligence at all. Its
purely behavioristic definition leaves out any attempt to identify important
components which together produce human intelligence. I will not enter
this discussion here, but just state the opinion of Turing about the outcome
of the imitation game.
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I believe that in about fifty years’ time it will be possible to programme computers
with a storage capacity of about 109 bits to make them play the imitation game so
well that an average interrogator will not have more than 70% chance of making the
right identification after five minutes of questioning.

The very detailed prediction is funny: Why a 70% chance, why a duration
of five minutes? In the next section I will discuss what arguments Turing
used to support this prediction.

1.2.1 Turing’s construction of an intelligent machine

In sections 2− 6 of (23) Turing mainly seeks to refute general philosophical
arguments against the possibility of constructing intelligent machines. ”The
reader will have anticipated that I have no very convincing argument of a
positive nature to support my views. If I had I should not have taken such
pains to point out the fallacies in contrary views. Such evidence as I have I
shall now give.” What is Turing’s evidence?

As I have explained, the problem is mainly one of programming. Advances in
engineering will have to be made too, but it seems unlikely that these will not be
adequate for the requirements. Estimates of the storage capacity of the brain vary
from 1010 to 1015 binary digits.1 I incline to the lower values and believe that only a
small fraction is used for the higher types of thinking. Most of it is probably used for
the retention of visual impressions. I should be surprised if more than 109 was re-
quired for satisfactory playing of the imitation game. Our problem then is to find out
how to programme these machines to play the game. At my present rate of working
I produce about a thousand digits of programme a day, so that about sixty workers,
working steadily through fifty years might accomplish the job, if nothing went into
the wastepaper basket.

The time to construct a machine which passes the imitation game is de-
rived from an estimate of the storage capacity of the brain 2 and the speed
of programming. Turing did not see any problems in creating machine in-
telligence purely by programming, he just found it too time consuming. So
he investigated if there exist more expeditious methods. He observed:

”In the process of trying to imitate an adult human mind we are bound
to think a good deal about the process which has brought it to the state that
it is in. We may notice three components.

1. The initial state of the brain, say at birth.
2. The education to which it has been subjected.
3. Other experience, not to be described as education, to which it has been

been subjected.

1 At this time the number of neurons was estimated as being between 1010 to 1015 . This
agrees with the estimates using todays knowledge.
2 It was of course a mistake to set the storage capacity equal to the number of neurons!
Von Neumann estimated the storage capacity of the brain to be about 1020 . But this affects
in no way the logic of Turing’s argument.
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Instead of trying to produce a programme to simulate an adult mind,
why not rather try to produce one which simulates the child’s...Presumably
the child brain is something like a notebook. Rather little mechanism, and
lots of blank sheets. Our hope is that there is so little mechanism in the child
brain that something like it can easily be programmed. The amount of work
in the education we can assume, as a first approximation, to be much the
same as for the human child.”

1.2.2 Turing on learning and evolution

In order to achieve a greater efficiency in constructing a machine with hu-
man like intelligence, Turing divided the problem into two parts

• The construction of a child brain
• The development of effective learning methods

Turing notes that the two parts remain very closely related. He proposes
to use experiments: teaching a child machine and see how well it learns. One
should then try another and see if it learns better or worse. ”There is an ob-
vious connection between this process and evolution, by the identifications

• structure of the machine = hereditary material
• changes of the machine = mutations
• Natural selection = judgment of the experimenter

Survival of the fittest is a slow process of measuring advantages. The exper-
imenter, by the exercise of intelligence, should be able to speed it up.”

Turing then discusses learning methods. He notes ((23), p.454): ”We nor-
mally associate the use of punishments and rewards with the teaching pro-
cess...The machine has to be so constructed that events which shortly pro-
ceeded the occurrence of a punishment signal are unlikely to be repeated,
whereas a reward signal increases the probability of repetition of the events
which lead to it.”

But Turing observes the major drawback of this method: ”The use of pun-
ishments and rewards can at best be part of the teaching process. Roughly
speaking, if the teacher has no other means of communicating to the people,
the amount of information which can reach him does not exceed the total
number of rewards and punishments applied.”

In order to speed up learning Turing demanded that the child machine
should understand some language. In the final pages of the paper Turing
discusses the problem of the complexity the child machine should have. He
proposes to try two alternatives: either to make it as simple as possible to
allow learning or to include a complete system of logical inference. He ends
his paper with the remarks: ”Again I do not know the answer, but I think
both approaches should be tried. We can see only see a short distance ahead,
but we can see plenty there that needs to be done.”
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1.2.3 Turing and neural networks

In the posthumously published paper Intelligent Machinery (24) Turing de-
scribes additional details how to create an intelligent machine. First he dis-
cusses possible components of a child machine. He introduces unorganized
machines of type A,B, and P. A and B are artificial neural networks with ran-
dom connections. They are made up from a rather large number N of similar
units, which can be seen as binary neurons. Each unit has two input termi-
nals and one output terminal which can be connected to the input termi-
nals of 0 (or more) other units. The connections are chosen at random. All
units are connected to a central synchronizing unit from which synchroniz-
ing pulses are emitted. Each unit has two states. The dynamics is defined by
the following rule:

The states from the units from which the input comes are taken from the previous
moment, multiplied together and the result is subtracted from 1.

Thus a neuron is nothing else than a NAND gate. The state of the network
is defined by the states of the units. Note that the network might have lots of
loops, it continually goes through a number of states until a period begins.
The period cannot exceed 2N cycles. In order to allow learning the machine
is connected with some input device which can alter its behavior. This might
be a dramatic change of the structure, or changing the state of the network.

Maybe Turing had the intuitive feeling that the basic transition of the type
A machine is not enough, therefore he introduced the more complex B-type
machine. I will not describe this machine here, because neither for the A or
the B machine Turing defined precisely how learning can be done.

A learning mechanism is introduced with the third machine, called a P-
type machine. The machine is an automaton with a number of N configu-
rations. There exist a table where for each configuration is specified which
action the machine has to take. The action may be either

1. To do some externally visible act A1, . . . Ak
2. To set a memory unit Mi

The reader should have noticed that the next configuration is not yet spec-
ified. Turing surprisingly defines: If the current configuration is s, then the
next configuration is the remainder of 2s or 2s + 1 on division by N . These
two configurations are called the alternatives 0 and 1. The reason for this
definition is the learning mechanism Turing defines. At the start the descrip-
tion of the machine is largely incomplete. The entries for each configuration
might be in five states, either U (uncertain), or T0 (try alternative 0), T1 (try
alternative 1), D0 (definite 0) or D1 (definite 1).

Learning changes the entries as follows: If the entry is U, the alternative
is chosen at random, and the entry is changed to either T0 or T1 according
to whether 0 or 1 was chosen. For the other four states, the corresponding
alternatives are chosen. When a pleasure stimulus occurs, state T is changed
to state D, when a pain stimulus occurs, T is changed to U. Note that state D
cannot be changed. The proposed learning method sounds very simple, but
Turing surprisingly remarked:
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I have succeeded in organizing such a (paper) machine into a universal machine.

Today the universal machine is called the Turing Machine. Turing even
gave some details of this particular P-type machine. Each instruction con-
sisted of 128 digits, forming four sets of 32 digits, each of which describes
one place in the main memory.

1.2.4 Discipline and initiative

We now turn to the next important observation of Turing. Turing notes that
punishment and reward are very slow learning techniques. So he requires:

If the untrained infant’s mind is to become an intelligent one, it must acquire both
discipline and initiative.

Discipline means strictly obeying the punishment and reward. But what
is initiative? The definition of initiative is typical of Turing’s behavioristic
attitude. ”Discipline is certainly not enough in itself to produce intelligence.
That which is required in addition we call initiative. This statement will have
to serve as a definition. Our task is to discover the nature of this residue as
it occurs in man, and to try and copy it in machines.”

With only a paper computer available Turing was not able to investigate
the subject initiative further. Nevertheless he made the bold statement (24):
”A great positive reason for believing in the possibility of making thinking
machinery is the fact that it is possible to make machinery to imitate any small
part of a man. One way of setting about our task of building a thinking ma-
chine would be to take a man as a whole and to try to replace all parts of
him by machinery...Thus although this method is probably the ’sure’ way of
producing a thinking machine it seems to be altogether too slow and imprac-
ticable. Instead we propose to try and see what can be done with a ’brain’
which is more or less without a body providing, at most organs of sight,
speech, and hearing. We are then faced with the problem of finding suitable
branches of thought for the machine to exercise its powers in.”
Turing mentions the following fields as promising:

• Various games, e.g. chess, bridge
• The learning of languages
• Translation of languages
• Cryptography
• Mathematics

Turing remarks: ”The learning of languages would be the most impres-
sive, since it is the most human of these activities. This field seems however
to depend rather too much on sense organs and locomotion to be feasible.”
Turing seems here to have forgotten that language learning is necessary for
his imitation game!



8 Heinz Mühlenbein

1.3 Von Neumann’s logical theory of automata

In 1938 Alan Turing was assistant of John von Neumann. But later they
worked completely independent from each other, not knowing the thoughts
the other had concerning the possible applications of the newly designed
electronic computers. A condensed summary of the research of John von
Neumann concerning machine intelligence is contained in his paper ”The
General and Logical Theory of Automata” (25). This paper was presented in
1948 at the Hixon symposium on: Cerebral mechanism of behavior. Von Neu-
mann was the only computer scientist at this symposium. The reason was
that von Neumann closely observed the theoretical research aimed to un-
derstand the brain in order to use the results for artificial automata.
Von Neumann notices three major limits of the present size of artificial au-
tomata

• The size of componentry
• The limited reliability
• The lack of a logical theory of automata

There have been tremendous achievements in the first two areas. There-
fore I will concentrate on the theory problem. Here von Neumann predicted:

The logic of automata will differ from the present system of formal logic in two
relevant respects.
1. The actual length of ”chains of reasoning”, that is, of the chains of operations,

will have to be considered.
2. The operations of logic will all have to be treated by procedures which allow

exceptions with low but non-zero probabilities.
...This new system of formal logic will move closer to another discipline which has
been little linked in the past with logic. This is thermodynamics, primarily in the
form it was received from Boltzmann, and is that part of theoretical physics which
comes nearest in some of its aspects to manipulating and measuring information.

Von Neumann tried later to formalize probabilistic logic. His results ap-
peared in (26). But this research was more or less a dead end, because von
Neumann did not abstract from the hardware components and did consider
time as part of the model. Probabilistic reasoning is now heavily used in ar-
tificial intelligence (17). The chains of operations are investigated in a branch
of theoretical computer science called computational complexity (8).

1.3.1 McCulloch-Pitts theory of formal neural networks

In 1943 McCulloch and Pitts (13) had described the brain by a formal neural
network, consisting of interconnected binary neurons. Von Neumann sum-
marizes their major result follows:

”The ”functioning” of such a network may be defined by singling out
some of the inputs of the entire system and some of its outputs, and then
describing what original stimuli on the former are to cause what ultimate
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stimuli of the latter. McCulloch and Pitts’ important result is that any func-
tioning in this sense which can be defined at all logical, strictly, and unam-
biguously in a finite number of words can also be realized by such a formal
system.”

In modern terms: Any computable function can be realized by a suffi-
ciently large McCulloch and Pitts network.
McCulloch and Pitts had derived this result by showing that their formal
neural network connected to an infinite tape is equivalent to a Turing ma-
chine. But even given this result, von Neumann observes that at least two
problems remain

1. Can the network be realized within a practical size?
2. Can every existing mode of behavior really be put completely and unam-

biguously into words?

Von Neumann informally discusses the second problem, using the prob-
lem of analogy. He remarks prophetically:

There is no doubt that any special phase of any conceivable form of behavior can be
described ”completely and unambiguously” in words.... It is, however an important
limitation, that this applies only to every element separately, and it is far from clear
how it will apply to the entire syndrome of behavior.

This severe problem has not been noticed by Turing. Using the example
visual analogy von Neumann argues: ”One can start describing to identify
any two rectilinear triangles. These could be extended to triangles which are
curved, whose sides are only partially drawn etc... We may have a vague and
uncomfortable feeling that a complete catalogue along such lines would not
only be exceedingly long, but also unavoidingly indefinite at its boundaries.
All of this, however, constitutes only a small fragment of the more general
concept of identification of analogous geometrical objects. This, in turn, is
only a microscopic piece of the general concept of visual analogy.” Thus
von Neumann comes to the conclusion:

Now it is perfectly possible that the simplest and only practical way to say what
constitutes a visual analogy consists in giving a description of the connections of
the visual brain....It is not at all certain that in this domain a real object might not
constitute the simplest description of itself.

Von Neumann ends the section with the sentence: ”The foregoing analy-
sis shows that one of the relevant things we can do at this moment is to point
out the directions in which the real problem does not lie.” In order to under-
stand and investigate the fundamental problem, von Neumann identified an
important subproblem. In nature obvious more complex beings have been
developed from less complex ones. Is this also possible using automata?
How much complexity is needed for automata to create more complex ones?

1.3.2 Complication and self-reproduction

Von Neumann starts the discussion of complexity with the observation that
if an automaton has the ability to construct another one, there must be a de-
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crease in complication. In contrast, natural organisms reproduce themselves,
that is, they produce new organisms with no decrease in complexity. So von
Neumann tries to construct a general artificial automata which could repro-
duce itself. The famous construction consists of the following automata:

1. A general constructive machine, A, which can read a description Φ(X) of
another machine, X, and build a copy of X from this description:

A+ Φ(X) ; X

2. A general copying machine, B. which can copy the instruction tape:

B + Φ(X) ; Φ(X)

3. A control machine, C, which when combined with A and B, will first ac-
tivate B, then A, link X to Φ(X) and cut them loose from A+B+C

A+B + C + Φ(X) ; X + Φ(X)

Now choose X to be A+B+C

A+B + C + Φ(A+B + C) ; A+B + C + Φ(A +B + C)

4. It is possible to add the description of any automaton D

A+B + C + Φ(A+B + C +D) ; A+B + C +D

+Φ(A+B + C +D)

Now allow mutation on the description Φ(A+B + C +D)

A+B + C + Φ(A +B + C +D′) ; A+B + C +D′

+Φ(A+B + C +D′)

Mutation at the D description will lead to a different self-reproducing au-
tomaton. This might allow to simulate some kind of evolution as seen in
natural organisms.

Von Neumann later constructed a self-reproducing automata which con-
sisted of 29 states (27). This convinced von Neumann that complication can
also be found in artificial automata. Von Neumann ends the paper with the
remark:

This fact, that complication, as well as organization, below a critical level is degen-
erative, and beyond that level can become self-supporting and even increasing, will
clearly play an important role in any future theory of the subject.

Von Neumann was well aware of the other two important evolutionary
processes besides replication - namely variation and selection. He decided
that knowledge about these two processes was not yet sufficient to incor-
porate them in his theory of automaton. “Conflicts between independent
organisms lead to consequences which, according to the theory of natural
selection, are believed to furnish an important mechanism of evolution. Our
models lead to such conflict situations. The conditions under which this mo-
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tive for evolution can be effective here may be quite complicated ones, but
they deserve study.”

Cellular automata have lead to great theoretical research. They can eas-
ily be extended to have the power of Turing machines. Nevertheless, the
central problem of this approach remains unsolved: How can the automata
evolve complex problem solving programs starting with fairly simple ini-
tial programs? This happened in biological evolution. Starting with small
self-reproducing units complex problem solving capabilities have evolved,
culminating in the human brain.

1.4 Holland’s logical theory of adaptive systems

In the paper “Outline for a Logical Theory of Adaptive Systems” (10) John
Holland tried to continue the scientific endeavor initiated by von Neumann.
He wrote:

The theory should enable to formulate key hypotheses and problems particularly
from molecular control and neurophysiology. The work in theoretical genetics
should find a natural place in the theory. At the same time, rigorous methods of
automata theory, particularly those parts concerned with growing automata should
be used.

Holland’s proposal is a very early attempt to work on a constructive the-
ory of the evolution of automata. It tries to combine being, acting, developing,
and evolving. This proposal is so important that I will describe it in detail.
Holland’s emphasis (like von Neumann‘s) is foremost on theories and sys-
tems, he does not claim to solve grand challenge applications with the pro-
posed methods. This can be tried after the theories have been formulated
and verified.

“Unrestricted adaptability (assuming nothing is known of the environ-
ment) requires that the adaptive system be able initially to generate any of
the programs of some universal computer . . . With each generation proce-
dure we associate the population of programs it generates;. . . In the same
vein we can treat the environment as a population of problems.”

Now let us have a closer look at Holland’s model. First, there is a finite set
of generators (programs) (g1, . . . , gk). The generation procedure is defined in
terms of this set and a graph called a generation tree. Each permissible com-
bination of generators is represented by a vertex in the generation tree. Hol-
land now distinguishes between auxiliary vertices and main vertices. Each
auxiliary vertex will be labeled with two numbers, called the connection and
disconnection probabilities. This technique enables to create new connections
or to delete existing connections. Each main vertex is labeled with a vari-
able referred to as density. The interested reader is urged to read the original
paper (10).

Holland claims that from the generation tree and the transition equations
of any particular generation procedure, one can calculate the expected values of
the densities of the main vertices as a function of time. Holland writes: “From the
general form of the transition equations one can determine such things as
conditions under which the resulting generation procedures are stationary
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processes.” Thus Holland already tried to formulate a stochastic theory of
program generation! This is an idea still waiting to be explored.

Holland’s next extension of the system is similar in spirit to von Neu-
mann’s self-reproducing automata. Holland introduces supervisory programs
which can construct templates which alter the probabilities of connections.
Templates play the role of catalysts or enzymes. Thus program construction
is also influenced by some kind of “chemical reactions.”

The above process is not yet adaptive. Adaptation needs an environment
posing problems. Therefore Holland proposes that the environment is treated
as a population of problems. These problems are presented by means of a finite
set of initial statements and an algorithm for checking whether a purported
solution of the problem is in fact a solution. Hollland then observes the prob-
lems of partial solutions and subgoals. “When we consider the interaction
of an adaptive system with its environment we come very soon to questions
of partial solutions, subgoals etc. The simplest cases occur when there is an a
priori estimate of the nature of the partial solution and a measure of the closeness of
its approach to the final solution.”

Holland then observes that a rich environment is crucial for the adaptation.
“Mathematical characterization of classes of rich environments relative to a
given class of adaptive systems constitutes one of the major questions in the
study of adaptive systems. . . . An adaptive system could enhance its rate of
adaptation by somehow enriching the environment. Such enrichment occurs
if the adaptive system can generate subproblems or subgoals whose solution
will contribute to the solution of the given problems of the environment.”

It is very interesting to note that Holland distinguished three kinds of
programs – supervisory programs, templates, and programs for the prob-
lem solution. The supervisory programs use a probabilistic generation tree
to generate programs, the templates are used as catalyst to “skew” the gen-
eration process. Holland perceived a hierarchy of programs (9):

1. productive systems – the generator system is able to produce other gen-
erators

2. autocatalytic systems – the generator system produces generators which
are used in the construction

3. self-duplicating systems – the generator system produces duplicates of
itself

4. general adaptive systems – has still to be defined

“The beginning of such a definition (of adaptive systems) lies in the fol-
lowing consideration: with the help of concepts such as autocatalytic and
self-duplicating generator systems it is possible to define such concepts
as steady-state equilibria and homeostasis for embedded automata. . . If the
generator system for such an automaton has a hierarchical structure, then a
small change in structure produces a small change in proportion to the “po-
sition” of the change in the hierarchy. . . By making changes first at the high-
est level and then at progressively lower levels of the hierarchy, it should be
possible to narrow down rather quickly to any automaton in this category
having some initially prescribed behavior.”

I believe that Holland’s proposal is a very good starting point for future
research. It puts forward many ideas not yet contained in current research.
After working several years on this theory Holland turned to a much sim-
pler evolution model, in fact the Modern Synthesis mentioned before. The
environment is hidden in a fitness function. Evolution then reduces to an op-
timization problem. This research lead to the famous genetic algorithm.
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1.5 The beginning of artificial intelligence - the Logic
Theorist

The term artificial intelligence was coined in the mid fifties. One of the first
achievements was the logic theory machine, also called the Logic Theorist
LT by Newell, Shaw and Simon (16). LT proved theorems in elementary
symbolic logic, more precisely the sentential calculus. It consists of expres-
sions built from combinations of basic symbols. Principia Mathematica from
Russel and Whitehead lists five expressions as axioms for the sentential cal-
culus. The first three are

(p or q) → p

p→ (p or q)

(p or q) → (q or p)

p and q are binary variables. Given any variable pwe can form (not p) Given
any two variables we can form the expression (p or q) or p → q. From these
axioms theorems can be derived.

When the LT found a simpler proof of proposition 2.85 of Principia Math-
ematica, Simon wrote to Russel: ”We have accumulated some interesting ex-
perience about the effects of simple learning programs superimposed on the
basic performance program. For example we obtain rather striking improve-
ments in problem-solving ability by inducing the machine to remember and
use the fact that particular theorems have proved in the past useful to it in
the connection with particular proof methods.....In general, the machine’s
problem solving is much more elegant when it works with a selected list of
strategic theorems than when it tries to remember and use all the previous
theorems” ((20) ,p.208).

Russel answered: ”I am delighted by your example of superiority of your
machine to Whitehead and me...I am also delighted by your exact demon-
stration of the old saw that wisdom is not the same thing as erudition” ((20),
p. 208).

Simon made serious attempts to interpret LT as a psychological theory of
problem solving. But after analyzing thinking-aloud protocols he realized
that LT did not yet fit at all the detail of human problem-solving revealed by
the protocols. Newell and Simon identified the subjects principal problem
solving tool. They called it means-ends analysis.

Means-ends analysis is accomplished by comparing the problem goal
with the present situation and noticing one or more differences between
them. The observed difference jogs memory for an action that might reduce
or eliminate the differences. The action is taken, a new situation is observed,
and if the goal has still not been reached, the whole process is repeated.
Means-ends analysis is used today in many problem solving tools. In princi-
ple backpropagation in artificial neural networks can also be seen as means-
ends analysis.

Means-ends analysis is the central component of the next AI system
Newell, Shaw, and Simon developed. It was named the General Problem
Solver GPS. It is an impressive system incorporating many important prob-
lem solving techniques, but difficult applications have not been reported.

The success of LT lead Simon and Newell in 1958 to their famous predic-
tion : ”I do not want to shock you, but there are now in the world machines
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that think, that learn, and that create. Moreover, their ability to do these
things is going to increase rapidly until - in a visible future - the range of
problems they can handle will be coextensive with the range to which the
human mind has been applied (19).”

1.6 Discussion of the early proposals to create artificial
intelligence by simulating evolution

I have reviewed only four of the early proposals which simulate natural
systems to create machine intelligence. I have chosen the proposals of von
Neumann and Turing because they have been the earliest. One observation
strikes immediately: all researchers investigated the problem of machine in-
telligence on a very broad scale. The main emphasis of Turing was the de-
sign of efficient learning schemes. For Turing it was obvious that only by
efficient learning of something like a child machine an intelligent machine
could be developed. The attitude of Turing was purely that of a computer
scientist. He firmly believed that machine intelligence equal to or surpassing
human intelligence could eventually be created.

Von Neumann’s approach was more interdisciplinary, using also results
from the analysis of the brain. He had a similar goal, but he was much more
cautious concerning the possibility to create an automaton with intelligence.
He identified important problems which blocked the road to machine intel-
ligence.

Both von Neumann and Turing investigated formal neural networks as
a basic component of an artificial brain. This component was not necessary
for the design, it was used only to show that the artificial automata could
have a similar organization as the human brain. Both researchers ruled out
that a universal theory of intelligence could be found, which would make
it possible to program a computer according to this theory. So Turing pro-
posed to use learning as the basic mechanism, von Neumann self-reproducing
automata.

Von Neumann was sceptical about the creation of machine intelligence.
He was convinced that learning leads to the curse of infinite enumeration.
While every single behavior can be unambiguously described, there is ob-
viously an infinite number of different behaviors. Turing also saw the lim-
itations of teacher based learning by reward and punishment, therefore he
required that the machine needs initiative in addition. Turing had no idea
how the learning techniques initiative could be implemented. He correctly
observed that it was necessary for creating machine intelligence by learning.
Higher-level learning methods are still an open research problem.

The designs of Turing and von Neumann contain all components con-
sidered necessary today for creating machine intelligence. Turing ended his
investigation with the problem of learning by initiative. Von Neumann in-
vented as a first step self-reproducing cellular automata.

There is no major flaw in their designs. Von Neumann’s question - can
visual analogy be described in finite time and limited space, is still unsolved.

In order to make the above problem clear, let me formulate a conjecture:
The computational universe can be divided into three sectors: computable
problems; non-computable problems (that can be given a finite, exact descrip-
tion but have no effective procedure to deliver a definite result); and, fi-
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nally, problems whose individual behaviors are, in principle, computable,
but that, in practice, we are unable to formulate in an unambiguous language
understandable for a Turing machine. Many non-computable problems are
successfully approached by heuristics, but it seems very likely that the prob-
lem of visual analogy belongs to the third class.

Holland proposed a general scheme for breeding intelligent programs us-
ing the mechanisms of evolution. This was the most ambitious proposal us-
ing program generation by evolutionary principles to create intellgent ma-
chines. This proposal tried to circumvent Turing’s problem to code all the
necessary knowledge.

Let us try to contrast the approach of Turing with those of von Neumann
and Holland. Turing proposed to programme the knowledge the humans
have. In order to speed up the implementation he suggested to programme
an automaton with only child like intelligence. The automaton child is then
teached to become more intelligent.

Von Neumann was skeptical if all the components necessary for human
like intelligence could be programmed in finite time and finite space. There-
fore von Neumann started with the idea to automatically evolve automata.
This idea was extended by Holland proposing an environment of problems
to evolve the automata. On the first sight this seems to solve the program-
ming problem. Instead of copying human like intelligence an environment
of problems was used. But Holland overlooked the complexity of program-
ming the problems. This seems to be not easier than to programme the knowl-
edge humans have about the environment.

Holland’s proposal to use stochastic systems, their steady-state equilibria
and homeostasis is in my opinion still a very promising approach for a con-
structive evolution theory of automata. Holland itself never implemented
his general model. It is still a theoretical design.

Later von Neumann’s proposal has been extended insofar as both, the
problem solving programs and the problems evolve together (14). This obviously
happened in natural evolution. In a new research discipline called artificial
life several attempts have been made to evolve automata and the environ-
ment together, but the evolution always stopped very early.

Newell, Shaw and Simon concentrated on the higher level problem solv-
ing capabilities of humans. Evolutionary principles or lower level structures
like the human brain are not considered to be relevant. Instead a theory of
problem solving by humans is used. Their research lead to cognitive sci-
ence and to artificial intelligence research based on theories of intelligence.
Despite their great optimism no convincing articial intelligence system has
been created so far using this approach.

1.7 Cyc and Cog: Two large projects in the legacy of Alan
Turing

Only very few big projects have been pursued in the spirit of Alan Turing.
Two recent examples are the projects Cyc and Cog. Cyc is an attempt to
assemble a comprehensive ontology and data base of everyday knowledge,
with the goal of enabling the system human-like reasoning. The goal of the
Cog project was to create a humanoid robot.
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1.7.1 The Cyc project

The Cyc project was started in 1984 with the goal to specify in a well-designed
language common sense knowledge (12; 6). Cyc attempts to assemble a com-
prehensive ontology and database of everyday common sense knowledge,
with the goal of enabling AI applications to perform human-like reason-
ing. The original knowledge base is proprietary, but a smaller version of the
knowledge base, intended to establish a common vocabulary for automatic
reasoning, was released 2005 as OpenCyc under an open source license.

Typical pieces of knowledge represented in the database are ”Every tree
is a plant” and ”Plants die eventually”. When asked whether trees die, the
inference engine can draw the obvious conclusion and answer the question
correctly. The Knowledge Base (KB) contains over a million human-defined
assertions, rules or common sense ideas. These are formulated in the lan-
guage CycL, which is based on predicate calculus and has a syntax similar
to that of the Lisp programming language.

Much of the current work on the Cyc project continues to be knowledge
engineering, representing facts about the world by hand, and implementing
efficient inference mechanisms on that knowledge. Increasingly, however,
work at Cycorp involves giving the Cyc system the ability to communicate
with end users in natural language, and to assist with the knowledge for-
mation process via machine learning.

Currently (2007) the knowledge base consists of

• 3.2 million assertions (facts and rules)
• 280,000 concepts
• 12,000 concept-interrelating predicates

Cyc runs now for 32 years, it is the longest running project in the history
of AI. But despite its huge effort its success is still uncertain. Up to now Cyc
has not been successfully be used for any broad AI application. The system
is far away to be used for a Turing test.

We remind the reader, that the coding of knowledge was considered
by Turing as too inefficient. Von Neumann even doubted if the necessary
knowledge for visual analogy could be specified in finite time. Today Cyc
seems to be more a confirmation of von Neumann’s doubt than a refutation.

1.7.2 The Cog project

The Cog project was started in 1993 with extreme publicity. The goal was
to understand human cognitive abilities well enough to build a humanoid
robot that develops and acts similar to a person (3; 4). One of the key ideas of
the project was to build a robot with capabilities similar to a human infant.
We have encountered this idea already in Turing’s proposal.

“By exploiting a gradual increase in complexity both internal and ex-
ternal, while reusing structures and information gained from previously
learned behaviors, we hope to be able to learn increasingly sophisticated
behavior (4).” Cog was designed bottom-up (3). This lead to good success in
the beginning. The big problems appeared later.
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Brooks et al. wrote prophetically: To date (1999), the major missing piece of
our endeavor is demonstrating coherent global behavior from existing subsystems
and sub-behaviors. If all of these systems were active at once, competition for actu-
ators and unintended couplings through the world would result in incoherence and
interference among the subsystems (4).

During the course of the project a lot of interesting research has been
done. But the problem of coherent or even intelligent behavior could not
be solved. Therefore the project was stopped in 2002 without even entering
the learning or development phase.

1.8 The JANUS hand-eye robot and the Pandemonium
architecture

With my research group I have also tried two larger research projects in the
spirit of Alan Turing and John von Neumann. The most spectacular was our
hand-eye robot JANUS. With JANUS we bridged the gap between small-
scale neural networks and real-world applicability. The robot had two eyes
and two arms with which it observed and manipulated its environment. The
robot learned from experience and self-supervision, initialized only with a
few essential properties. JANUS also incorporated structural and functional
medical knowledge of the brain.

The JANUS architecture was directly influenced by the top-level structure
of the human brain and its hemispherical functional lateralization (7; 22).
However the similarities end at that level and a great deal of freedom is
permitted in lower-level neural networks. The name JANUS was chosen af-
ter the Roman god for a specific reason: The brain not only looks out and
observes and weighs up its environment, but it also looks inwardly and is
aware of its own processes. It has a reflective architecture.

The JANUS brain controls a physical robot that may exist in a changing
environment. The robot can be affected by the environment either directly,
through physical contact with objects, or indirectly by the thought and learn-
ing processes. The highest level description of the JANUS architecture is il-
lustrated in figure 1.1.

The brain is divided in two halves laterally and two blocks vertically. All
sensory signals from the left side of the robot pass directly to the right half
of the brain, while those from the right side pass directly to the left half
of the brain. The left half of the brain controls the motor outputs affecting
the right side of the robot, and similarly the right half controls the left motor
side. There exist an important connection between the two hemispheres (the
corpus callosum) where information is exchanged.

The central concept of the JANUS architecture is the notion of self-assessment
or self-supervision, within a hierarchy of adaptable network modules. The
modules can modify themselves, and higher levels can act on other levels.
In order that this might be possible, each module tries to estimate its limita-
tions through self-assessment measures like confidence and reliability.

The JANUS project run from 1991 till 1997. It had to be abandoned
because of lack of funding. The research progress was promising, but in
1997 JANUS was still far away to be used in a real application.The re-
search has been published in the series GMD reports. The reports are out
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Fig. 1.1 The architecture of the JANUS brain

of print. The easiest access is via the WEB (http://citeseer.ist.psu.edu) or
www.iais.fraunhofer.de/muehlenbein.html.

The low-level neural network architecture of JANUS has been investi-
gated separately. We called it the PANDEMONIUM or MINOS architecture.
Pandemonium had been originally proposed in 1958 by Selfridge (18). The
idea is to divide adaptively a complex domain, through the use of special-
ized agents, working in parallel. All these agents, or daemons in Selfridge’s
words, process the same signal in parallel, and each provides an answer
with a certain confidence. The daemon with the largest confidence will be
chosen for classification.

Thus for a letter classification problem we might have 26 agents, each of
which is specialized on recognizing a particular letter in all distortions. Each
agent uses a number of filters. The learning method used by Selfridge was
gradient descent for adapting the weights for each filter used.
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We have taken this general idea and extended it to a modular system
of neural networks. The central new idea is self-assessment by reflection.
Each module observes its own behavior and produces information relating
to the quality of its classification. The architecture was very successful in a
number o classification tasks, but in the course of developing it more and
more refinements had to be implemented. The interested reader is referred
to (21; 1; 2).

1.9 Conclusion

Today computational intelligence is divided into many fields e.g. evolution-
ary computation, neural networks, fuzzy logic. These are further separated
in a myriad of specialized techniques. In this paper I have recalled the fun-
damental research issues of machine intelligence by discussing the research
of Alan Turing and John von Neumann. They represent two positions pop-
ular till today. For Turing the creation of machines with human-like intel-
ligence was just a question of programming time. He estimated that sixty
programmers had to work for fifty years. John von Neumann was more
cautious. Using the example of visual analogy he doubted that human-like
intelligent machines could be programmed in finite time and space. This
lead him to the question if intelligent programs could automatically evolve
by simulating evolution. While von Neumann solved the problem of self-
reproducing automata, automata solving complex problems could not be
yet obtained. I have identified the major peoblem of this approach: the pro-
gramming of the environment seems to be as difficult as programming the
human problem solving caoabilities.

In my opinion it is not yet clear if Turing will be ultimately right that
automata with human like intelligence could be programmed. Up to now
computational intelligence was successful in specialized applications only,
automata passing the Turing test or understanding languages are not yet in
sight.
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