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Evolutionary Computation: Centralized,
Parallel or Collaborative

Heinz Mühlenbein

Abstract This chapter discusses the nature and the importance of spatial in-
teractions in evolutionary computation. The current state of evolution theo-
ries is discussed. An interaction model is investigated we have called Dar-
win’s continent-island cycle conjecture. Darwin argued that such a cycle is
the most efficient for successful evolution. This bold conjecture has not yet
been noticed in science. We confirm Darwin’s conjecture using an evolu-
tionary game based on the iterated prisoner’s dilemma. A different inter-
action scheme, called the stepping-stone model is used by the Parallel Ge-
netic Algorithm PGA. The PGA is used to solve combinatorial optimization
problems. Then the Breeder Genetic Algorithm BGA used for global opti-
mization of continuous functions is described. The BGA uses competition
between subpopulations applying different strategies. This kind of interac-
tion is found in ecological systems.

1.1 Introduction

Modeling evolutionary principles found in nature in order to make the de-
velopment of powerful problem solving programs easier, or even to create
human-like intelligence was tried already in the beginning of the computer
area. There have been followed at least three approaches to achieve this goal.

1. Use a theory - develop a theory of problem solving and implement it on
a computer

2. Copy the brain - analyze the human brain and make a copy of it on a
computer

3. Copy natural evolution - analyze natural evolution and implement the
most important evolutionary forces on a computer

In the history of artificial intelligence research one of the three approaches
was dominant at any one time. The second and third approach depend on
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biological knowledge. In this chapter I will concentrate on the third ap-
proach. It relies on theories of evolution and of computation. The theory
of computation is well advanced, so the problems of evolutionary computa-
tion lie in implementing theories of evolution. If a convincing constructive
(or even mathematical) theory of evolution would exist, then evolutionary
computation would be just a matter of implementation - which of the major
evolutionary forces to implement in what detail.

But does biology possess a constructive theory of evolution? Here the
opinions differ extremely. The main stream theory of evolution is called New
or Modern Synthesis. Its followers claim that it reconciles Darwin’s idea of
continuous small variations with gene flows derived from population ge-
netics. The second major force of the Modern Synthesis is Darwin’s concept
of natural selection. But are these two forces sufficient to explain the wonders
of evolution at least in some broad terms?

There is no doubt that the modern synthesis is able to explain the change
of gene frequencies on a small time scale. If there is enough diversification,
then the theory correctly predicts further changes for a short time. But can it
explain the evolution on a large time scale with new species arising and old
species vanishing?

The outline of the chapter is as follows. First I recall the state of art of
evolution theories, because they are used as models for evolutionary com-
putation. Then I describe different genetic algorithms, centralized, parallel
and co-evolutionary. The major part of the chapter deals with the investiga-
tion of Darwin’s conviction that space is as important as time for evolution
to take place. Especially we1 will analyze an important conjecture of Dar-
win which has been unnoticed sofar. We have called it the Continent-island
cycle conjecture. This conjecture is analyzed using evolutionary games. Here
a number of different spatial distributions are compared. Then I describe the
parallel genetic algorithm PGA and its use in combinatorial optimization. In
the final section co-evolution of sub-populations is used for continuous op-
timization.

The term collaboration does not appear in textbooks of biology. In a re-
stricted form collaboration is investigated in ecology. Collaboration in the
general sense is considered to be an important component of human soci-
eties and therefore part of sociology. Biology researches cooperation driven
by interactions - between individuals, between species, between geographic
distributed sub-populations, within insect colonies etc. In this chapter we
investigate spatial distributions which vary over time. The most interesting
distribution is the continent-island cycle. This might also be a model for suc-
cessful collaboration in human societies.

1.2 Darwinism - the unfinished theory

Darwin‘s book “The Origin of Species by Means of Natural Selection” had
undoubtedly an immense influence on biology and modern thinking in gen-
eral. But it should have been seen as the beginning of a new theory of evo-
lution, not a solution. The further development of Darwin‘s ideas has been

1 The research has been done together with many researchers. Therefore I use mainly we
throughout the chapter.
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hindered especially in the Anglo-Saxon countries because of the battle of its
supporters against some orthodox believers of religion2.

In Germany Ernst Haeckel was s strong advocate of Darwin’s theory.
Nevertheless he wrote as early as 1863 - only four years after the publication
of the Origin: “Darwin’s evolution theory is in no ways finished, instead it
gives only the first outline of a future theory. On one hand we do not know
the certainly many relations, which are probably not of a smaller weight for
the origin of species than natural selection, which was emphasized far too
one-sided by Darwin. And in many cases the external conditions of exis-
tence of an-organic nature like climate and habitat, geographic and topo-
graphic conditions, to which the organism have to adapt, should be not less
important than these relations....Another, and no doubt the most important
shortcoming of Darwin’s theory lies in the fact, that it gives no indication of
the spontaneous creation or the first genesis of the one or the few oldest organisms
from which all other organisms developed (19)3”.

It is outside the scope of this paper to discuss the above problems in de-
tail. They are still controversial in biology. In order to refresh the memory of
the reader I recall some important terms in evolutionary biology

• Genotype: The molecular basis of inheritance as defined by genes and
chromosomes.

• Phenotype: The actual appearance of the living beings.
• Species: A group of organisms capable of inter-breeding and produc-

ing fertile offspring. More precise measures are based on the similarity
of DNA or morphology.

Another important concept in population genetics is the fitness. It de-
scribes the capability of an individual of certain genotype to reproduce, and
usually is equal to the proportion of individual genes in the next generation.
An individual’s fitness is manifested through its phenotype. As phenotype
is affected by both genes and environment, the fitness of different individ-
uals with the same genotype are not necessarily equal, but depend on the
environment on which the individuals live. However, the fitness of the geno-
type is considered to be an averaged quantity, it will reflect the outcomes of
all individuals with that genotype.

This is a very careful definition, but how can this fitness be measured? Its
needs the next generation! I will not discuss this complicated issue further.
All mathematical models of population genetics assume that the fitness is
given. In the simplest case of a single gene with two alleles a and A, we
have the genotypes with genotypes aa, aA, AA with corresponding fitness
values w00, w01, w11.

In order to illustrate the current state of art of evolution theories, I shortly
describe two representative examples. The first one is expressed in the book
of Maynard Smith and Szathmary (48). They see evolution as the evolution
of complexity in terms of genetic information and how it is stored, trans-
mitted, and translated. This approach has led them to identify several major
transitions, starting with the origin of life and ending with the origin of hu-
man language (see table 1.1).

2 This controversy is still not settled, if one considers the many supporters of ”intelligent
design” in the US.
3 translation by the author
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before → after
replicator molecules → population of molecules in compartments
independent replicator → chromosomes
RNA as gene and enzyme → DNA and protein
procaryote → eucaryote
asexual clones → sexual population
protist → plants, animals, fungi
solitary individuals → colonies
societies of primates → human societies
Table 1.1 Major transitions in evolution (48)

The authors “solve” some of the transition problems with a very narrow
version of the modern synthesis. “We are supporters of the gene centered
approach proposed by Williams and refined by Dawkins.” In the gene cen-
tered approach, also called the selfish gene concept (7), the genes are the major
actors. They possess an internal force to proliferate as much as possible.

Let me illustrate the gene centered approach with the kin selection concept.
In the gene centered approach fitness measures the quantities of copies of
the genes of an individual in the next generation. It doesn’t really matter
how the genes arrive in the next generation. That is, for an individual it is
equal beneficial to reproduce itself, or to help relatives with similar genes to
reproduce, as long as at least the same number of copies of the individual’s
genes get passed on to the next generation. Selection which promotes this
kind of helper behavior is called kin selection. It has even been put into a
mathematical rule by Hamilton (20)! An altruistic act will be done if

C < r ∗B (1.1)

Here C means the cost in fitness to the actor, B the benefit in fitness and r
the relatedness. Let us discuss a simple example. Consider a father and his
children, which are drowning. Here r = 0.5. Let us assume that the father
has to make a sacrifice, this means C = 1. First assume B = 1. Then the
father will not make a sacrifice for a single child, but it needs three children
at least. But is the father is not able to father new children, then he makes
the sacrifice for a single child! (see also the discussion of altruism in (48).

The selfish gene concept has been opposed by a small group in biology,
most notably the late Stephen J. Gould. Recently even philosophers of sci-
ence formulate a basic critic. “The synthetic theory bypassed what were at
the time intractable questions of the actual relationship between stretches of
chromosomes and phenotypic traits. Although it was accepted that genes
must, in reality, generate phenotypic differences through interaction with
other genes and other factors in development, genes were treated as black
boxes that could be relied on to produce phenotypic variation with which
they were known to correlate (17).”

A more complex theory of evolution is contained in the book by Jablonka
and Zeligowski. The title is: “Evolution in Four Dimension” (23). The four
dimensions are

• The genetic inheritance system
• The epigenetic inheritance system
• The behavioral inheritance system
• The symbolic inheritance system
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The genetic dimension dominates the current research. It culminated in
sequencing the human genome. The epigenetic inheritance system is less
understood and varies considerably. Although their DNA sequences remain
unchanged during development, cells nevertheless acquire information that
they can pass to their progeny. Let me give a simple example. Liver cells,
skin cells, and kidney cells, look different, behave differently, and function
differently, yet they contain all the same genetic information. The difference
are the consequences of events that occurred during the developmental his-
tory of each type of cell and determined which genes are turned on. Now,
when liver cells divide their daughter cells are liver cells, and so on. Al-
though their DNA sequences remain unchanged during development, cells
nevertheless acquire information that they can pass to their progeny. This in-
formation is transmitted by the epigenetic inheritance system. Sometimes the
information can be transmitted even transgenerationally. The existence of
epigenetic inheritance was barely recognized until the mid-1970s.

Behavioral inheritance is still controversial. Most evolutionists stress the
genetic basis of behavior (see Maynard Smith discussed earlier). They main-
tain that behavioral strategies are to a large extent genetically determined
and almost independent of each other. Each behavior has been shaped
through natural selection of genes that led to the construction of a specific
behavioral module in the brain.

The fourth dimension, the symbolic interaction system, is unique to man.
There exists only a few attempts of a mathematical theory of the symbolic
inheritance system. Most notably is the theory of ”cultural transmission” (4).

But what makes even this very condensed theory so difficult is the inter-
action of all four inheritance systems. The genetic inheritance system does not
dominate or even is foundation of the other three systems. The four dimen-
sions cannot be analyzed separately, it is their complex interaction which
defines the success of the individual.

Metaphorically speaking: Each organism travels on a unique trace in this four di-
mensional space.

1.2.1 The system view of evolution

One of the major weakness of the modern synthesis is the separation of the
individuals and the environment. The fitness is averaged over individuals and
environments. Let O(t) = (O1(t), . . . ON (t)) denote the vector of individ-
uals at generation t. Then we can formulate a simple system model. Each
individual Oi(t) (mainly characterized by its genotype) is assigned a fitness
f predicting the performance of this individual within the environment E
and given the other individuals. Then the evolution can be written as:

Oi(t+ 1) = f(O(t), E(t)) (1.2)
E(t+ 1) = g(E(t) (1.3)

It seems impossible to obtain numerical values for this fitness. Therefore
theoretical biology has made many simplifications. The environment is kept
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fixed, i.e g(E(t)) = const, the influence of other individuals is described by
some averages of the population, etc.. The above model is still too simple,
because each individual is developing in a close interaction with its environment.

The model given by 1.2 has not yet been used in population genetics,
but specialized cases are applied commonly in population dynamics (21) or
ecology. Given two species with population sizes N and M , the following
equations are used

N(t+ 1) = F (N(t),M(t)) (1.4)
M(t+ 1) = G(N(t),M(t)) (1.5)

The population sizes of the next generation depends on the interaction of
the two species at generation t. The interaction can be positive, this means
that both species are supporting each other. If the interaction is negative we
have the classical predator-prey system (18).

The development problem in evolutionary models has been addressed
recently by the developmental system theory (41). Unfortunately the theory is
very informal, it has been formulated from a philosopher’s point of view.
Therefore I will describe the nucleus of an evolution theory as it has been
stated by Anatol Rapaport (44).

The theory is based on the concept of an organism. “According to a soft
definition, a system is a portion of the world that is perceived as a unit and
that is able to maintain its identity in spite of changes going on in it. An ex-
ample of a system par excellence is a living organism. But a city, a nation,
a business firm, a university are organisms of a sort. These systems are too
complex to be described in terms of succession of states or by mathematical
methods. Nevertheless they can be subjected to methodological investiga-
tions (44).”

Rapaport then defines: “Three fundamental properties of an organism ap-
pear in all organism-like systems. Each has a structure. That is, it consists of
inter-related parts. It maintains a short-term steady state. That is to say, it re-
acts to changes in the environment in whatever way is required to maintain
its integrity. It functions. It undergoes slow, long term changes. It grows, de-
velops, or evolves. Or it degenerates, disintegrates, dies. Organisms, ecolog-
ical systems, nations, institutions, all have these three attributes: structure,
function, and history, or, if you will, being, acting, and becoming.”

Taking the importance of individual development into account, I divide
becoming into developing and evolving. Development is the process creating
a grown-up individual in a given environment from an fertilized egg . Evo-
lution is the change of the species in many generations.

The neuro-biologist Humberto Matura (32) also tried to find criteria for
what characterizes life. He proposed a new concept which he called au-
topoiesis. It is derived from Greek ”autos=self” and ”poiein=to make”. The
theory remained rather informal and speculative. Therefore the concept was
not very successful in biology, but it is very popular in other sciences, espe-
cially in sociology.

The major conclusion of this section is: There exists no theory of evolution
today which could serve as a computer model for evolving artificial creatures with
problem solving capacities. Given this situation it is no surprise that early mod-
els of evolutionary computation are not based on detailed biological models,
but use biological terms only metaphorically. This observation is still valid.
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1.3 Evolutionary algorithms - centralized, parallel or
collaborative

There exist a myriad of evolutionary algorithms which model parts of gen-
eral evolutionary models described in the previous section. The most popu-
lar algorithm is the genetic algorithm GA which models evolution by sexual
reproduction and natural selection. The GA was invented by Holland (22).
The optimization problem is given by a fitness function F (x).

Genetic Algorithm

STEP0: Define a genetic representation of the problem; set t = 0
STEP1: Create an initial population P (0) = x0

1, . . . x
0
N

STEP2: Compute the average fitness F =
∑N

i F (xi)/N . Assign each indi-
vidual the normalized fitness value F (xti)/F

STEP3: Assign each xi a probability p(xi, t) proportional to its normalized
fitness. Using this distribution, randomly select N vectors from
P (t). This gives the set S(t)

STEP4: Pair all of the vectors in S(t) at random forming N/2 pairs. Apply
crossover with probability pcross to each pair and other genetic op-
erators such as mutation, forming a new population Pt+1

STEP5: Set t = t+ 1, return to STEP2

In the simplest case the genetic representation is just a bit-string of length
n, the chromosome. The positions of the strings are called locus of the chro-
mosome. The variable at a locus is called gene, its value allele. The set of
chromosomes is called the genotype which defines a phenotype (the individ-
ual) with a certain fitness. The crossover operator links two searches. Part of
the chromosome of one individual (search point) is inserted into the sec-
ond chromosome giving a new individual (search point). We will later show
with examples why and when crossover helps the search.

A genetic algorithm is a parallel random search with centralized control. The
centralized part is the selection schedule and the mating. For the selection
the average fitness of the population is needed. The result is a highly syn-
chronized algorithm, which is difficult to implement efficiently on parallel
computers.

In our parallel genetic algorithm PGA we use a distributed selection scheme.
This is achieved as follows. Each individual does the selection by itself. It
looks for a partner in its neighborhood only. The set of neighborhoods de-
fines a spatial population structure. Thus the PGA runs totally asynchronous,
there is no synchronization

Our second major change can now easily be understood. Each individual
is active and not acted on. It may improve its fitness during its lifetime by
performing a local search. The generic PGA can be described as follows

Parallel genetic algorithm

STEP0: Define a genetic representation of the problem
STEP1: Create an initial population and its population structure
STEP2: Each individual does local hill-climbing
STEP3: Each individual selects a partner for mating in its neighborhood
STEP4: An offspring is created with genetic crossover of the parents
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STEP5: The offspring does local hill-climbing. It replaces the parent, if it is
better than some criterion (acceptance)

STEP6: If not finished, return to STEP3.

Because each individual runs independently on a processor, it may use a
specific local hill-climbing method. This feature will be important for prob-
lems, where the efficiency of a particular hill-climbing method depends on
the problem instance.

The PGA can be described as a parallel search with information exchange
between neighbors in the space. Because the neighborhoods overlap, a diffu-
sion process takes place. In the PGA all decisions are made by the individuals
themselves. Therefore the PGA is a totally distributed algorithm without any
central control.

There have been several other attempts to implement a parallel genetic al-
gorithm. Most of the algorithms run k identical standard genetic algorithms
in parallel, one run per processor. They differ in the linkage of the runs.
Tanese (49) introduces two migration parameters: the migration interval, the
number of generations between each migration, and the migrationrate, the
percentage of individuals selected for migration. The subpopulations are
configured as a binary n-cube. In the implementation of Cohoon (5) it is
assumed that each subpopulation is connected to each other. The algorithm
from Manderick et al. (30) has been derived from our PGA. In this algorithm
the individuals of the population are placed on a planar grid and selection
and crossing-over are restricted to small neighborhoods on that grid.

All but Manderick’s algorithm use subpopulations that are densely con-
nected. We have shown in (34) why restricted connections like a ring are
better for the parallel genetic algorithm. All the above parallel algorithms
do not use hill-climbing, which is one of the most important parts of our
PGA.

An extension of the PGA, where subpopulations are used instead of sin-
gle individuals, has been described in (40). This algorithm outperforms the
standard GA by far in the case of function optimization. The idea has been
refined in (45) where competing sub-populations of varying sizes are used.

Before we report applications of the PGA, we discuss the importance of
spatial structures and collaboration in biology.

1.4 Co-evolution and collaboration in evolution

Collaboration is not part of evolution theories, it plays the dominant role in
a separate field, today called ecology. Evolution theories try to understand
how collaboration evolves and changes, whereas ecology models the exist-
ing collaboration in a habitat, trying to understand its influence on the size
of the populations. A famous example are predator-prey cycles described
in equation 1.4. In this section we discuss the interaction of populations in
spatial distributions and its importance for the speed of evolution.
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1.4.1 Darwin revisited

First we will show that Darwin was aware of the importance of external con-
ditions of an-organic nature like the geographic distribution. In the section
“Circumstances favourable and unfavourable to Natural Selection” Darwin
tries to describe the influence of intercrossing, isolation and number of in-
dividuals on the production of new organic forms. Darwin mentions that
this is an extremely intricate subject. He argues very carefully, for example:
”For to ascertain whether a small isolated area or a large open area like a
continent has been the most favourable for the production of new organic
forms, we ought to make comparisons within equal times; and this we are
incapable of doing”.

Simulation makes such a comparison possible. It is of course impossible
to simulate the real evolution of nature, so we have to find an artificial en-
vironment which is nevertheless complex enough to model the important
aspects of evolution. As a first step we have decided to simulate an artifi-
cial population where each individual plays a two-person game against the
other individuals. We have selected the Iterated Prisoner’s Dilemma IPD,
because it is surprisingly complex. The simulation will be discussed in sec-
tion 1.5.

After a lot of reasoning Darwin arrives at the following conclusion. “I
conclude that a large continental area, which will probably undergo many
oscillations of level, and which consequently will exist for long periods in
a broken condition, will be the most favourable for the production of many
new forms of life, likely to endure long and spread widely.” Darwin argues
as follows:

In a large continent, there is severe competition. This leads to the extinction of over-
specialized species. But it is highly improbable that something new arises on a large
continent. This happens much easier on small islands. But if the islands are isolated
for a long time, then over-specialized forms will develop.

So Darwin postulates, that the islands should reconvert to a large con-
tinent. There will be again severe competition eliminating the specialized
forms. This briefly sketches Darwin’s derivation of his hypothesis. The in-
terested reader is highly recommended to read the above mentioned chapter
in Darwin’s book. I found this conjecture so important that I have named it
Darwin’s continent-island cycle conjecture.

Mainstream biological science seems not to have noticed or to have
deliberately neglected this section in Darwin’s book. Darwin’s evolution
model is a non-equilibrium model, whereas all the popular Darwinian, Neo-
Darwinian and Synthesis theories are equilibrium models.

Darwin’s arguments in favor of the continent cycle can also, with some
minor changes, be applied to other areas like the invention of successful sci-
entific ideas or the efficient organization of companies. Take the organization of
companies as an example. If the market (the environment) is stable, a large
centralized company with severe internal competition is most effective. If
the company has to adapt to a changing market, the large company should
be subdivided into small companies which can adapt much faster.
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1.4.2 Spatial population structures in evolution theories

Several researchers in biology have tried to investigate the importance of
spatial population structures for evolution - without ever referring to Dar-
win. Space is an important element of the shifting balance theory of evolution
proposed by Wright (56). He argued that the best way to avoid a species
being hung up on a low fitness peak is to have the population broken up
into many nearly isolated subpopulations. Wright’s theory has three phases
(57). Phase 1 consists of the differentiation of innumerable small local popu-
lations by more or less random processes that occasionally lead to higher
peaks. Phase 2 is the occupation of higher peaks by local mass selection. Phase
3 is the diffusion of these successful subpopulations throughout the species,
followed by the appearance of still more successful centers of diffusion at
points of contact. Then the whole process starts again.

Fisher (11), in contrast, argued that no such theory is needed. In a highly
multidimensional fitness surface, the peaks are not very high and are con-
nected by fairly high ridges, always shifting because of environmental
changes. According to Fisher, the analogy is closer to waves and troughs
in an ocean than in a static landscape. Alleles are selected because of their
average effects, and a population is unlikely to be ever in such a situation
that it can never be improved by direct selection based on additive variance.

The difference between these two views is not purely mathematical, but
physiological. Does going from one favored combination of alleles to an-
other often necessitate passing through genotypes that are of lower fitness?
Fisher argued that evolution typically proceeds in a succession of small
steps, leading eventually to large differences by the accumulation of small
ones. According to this view, the most effective population is a large panmic-
tic one in which statistical fluctuations are slight and each allele can be fairly
tested in combination with many others alleles. According to Wright’s view,
a more favorable structure is a large population broken up into subgroups,
with migration sufficiently restricted (less than one migrant per generation)
and size sufficiently small to permit appreciable local differentiation.

Four different models for spatially structured populations have been in-
vestigated mathematically

• the one-island model
• the island model
• the stepping stone model
• the isolating by distance model

In the one-island model, an island and a large continent are considered.
The large continent continuously sends migrants to the island. In the island
model, the population is pictured as subdivided into a series of randomly
distributed islands among which migration is random.

In the stepping-stone model migration takes place between neighboring
islands only. One and two dimensional models have been investigated. The
isolation by distance model treats the case of continuous distribution where
effective demes are isolated by virtue of finite home ranges ( neighborhoods)
of their members. For mathematical convenience it is assumed that the posi-
tion of a parent at the time it gives birth relative to that of its offspring when
the latter reproduces is normally distributed.

Felsenstein (9) has shown that the isolating by distance model leads to
unrealistic clumping of individuals. He concluded, that this model is biolog-
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ically irrelevant. There have been many attempts to investigate spatial pop-
ulation structures by computer simulations, but they did not have a major
influence on theoretical biology. A good survey of the results of the different
population models can be found in (10). Population models with oscillation
like Darwin’s continent-island cycle have not been dealt with.

The issue raised by Wright and Fisher is still not settled. Phase 3 of
Wright’s theory has been recently investigated by Crow (6). He concludes:
”The importance of Wright’s shifting-balance theory remains uncertain, but
we believe whatever weaknesses it may have, they are not in the third
phase.”

The problem of spatial population structures is now reappearing in the
theory of genetic algorithms. The plain GA is based on Fisher’s model. It
is a well known fact, that the GA suffers from the problem of premature
convergence. In order to solve this problem, many genetic algorithms en-
force diversification explicitly, violating the biological metaphor. A popular
method is to accept an offspring only if it is genetically more than a certain
factor different from all the members of the population.

Our parallel genetic algorithm PGA tries to introduce diversification
more naturally by a spatial population structure. Fitness and mating is re-
stricted to neighborhoods. In the PGA we have implemented the isolation by
distance model and the stepping stone model. The three phases of Wright’s the-
ory can actually be observed in the PGA. But the relative importance of the
three phases are different than Wright believed. The small populations do
not find better peaks by random processes. The biggest changes of the pop-
ulation occur at the time after migration between the subpopulations. Re-
combinations between immigrants and native individuals occasionally lead
to higher peaks which were not found by any of the subpopulations during
isolation. This behavior can easily be demonstrated in the application func-
tion optimization ( see (34) for details). We can therefore state the following
observation.

The creative forces of evolution take place at migration and few generations after-
wards. Wright’s argument that better peaks are found just by chance in small sub-
populations is wrong.

In our opinion the most important part of Wright’s theory is what Wright
postulated as “the appearance of still more successful centers of diffusion at
points of contact”. The difference of the evolution in a large continent and
small isolated islands, has been recently investigated by (43).

We believe that static fitness functions cannot model natural evolution. In
a real environment the fitness of an individual depends on the outcome of its
interactions with other organisms in the environment. The fitness cannot be
specified in advance. Therefore we used for a simulation of complex spatial
population structures an evolutionary game.

1.5 The iterated prisoner’s dilemma as an evolutionary game

In our artificial ecology the interactions of the individuals are modeled by a
game. The fitness of the individual is the sum of the payoffs the individual
gets during its lifetime. We have chosen the Iterated Prisoner’s Dilemma
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(IPD), because it has been investigated from a number of different view-
points.

The major emphasis of our research is on methodological questions for
at least two reasons. First we believe that methodological questions are of
utmost importance in a scientific field where it is almost impossible to com-
pare simulation results with actual experiments. Second, a convincing sim-
ulation to support or disprove Darwin’s continent cycle theory would need
a tremendous effort.

Over its 60-year lifespan, the Iterated Prisoner’s Dilemma has been one of
the most frequently studied phenomena in economics, political science, so-
ciology and psychology ( see Axelrod (1) for a survey). The basic prisoner’s
Dilemma is a two-person game, with each player having a choice of either
cooperating (C) or defecting (D). A typical set of payoffs is presented below.

Move C D
C 3/3 0/5
D 5/0 1/1

Given these payoffs, it is easily shown that mutual defection is the only
Nash equilibrium. Of course, the intrigue of the Prisoner’s Dilemma is that
this unique equilibrium is Pareto inferior to the mutual cooperation out-
come. If the basic Prisoner’s Dilemma is iterated, the resulting super game
is an Iterated Prisoner’s Dilemma IPD. If the number of iterations is a known
finite number, then a simple backward induction argument implies that the
only equilibrium is mutual defection in every round. However, if the game
is repeated a finite, but unknown number of times, then cooperative behav-
ior can theoretically emerge.

The ecological approach to experimental games has added another di-
mension to the study of conflict and cooperation in societies. John May-
nard Smith (47) introduced the evolutionary game theory, where the games
are played by a population of individuals. The higher the payoff of an in-
dividual, the more offspring he will get. In this manner the most effective
strategies survive. A strategy is called evolutionary stable (47), if it cannot be
invaded by a single mutant strategy.

The theory assumes that the strategies are not changed during the course
of evolution. In our simulations the strategies are coded by genes. The strate-
gies are constantly changed by the parallel genetic algorithm, which uses
mutation and crossing-over for generating offspring.

1.5.1 The simulation of spatial structures using the Iterated
Prisoner’s Dilemma

There have been many attempts to investigate the IPD with genetic algo-
rithms. The first simulation was performed by Axelrod (2). Axelrod con-
sidered strategies where the moves are based on the game’s past three-
move history. The major focus of Axelrod’s study was on strategies evolving
against a fixed environment. Each individual played against eight repre-
sentative strategies. Marks (31) extended the investigation to bootstrap evo-
lution, where the individuals play against each other. Miller (33) used fi-
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nite automata to represent strategies. Furthermore he investigated the ef-
fect of informational accuracy on the outcome of the simulation. All three
researchers used the plain genetic algorithm for evolving the population.
They have been interested in equilibrium states and “optimal” strategies.
We concentrate on the evolution of the behavior of the total population.

The PGA has been extended to simulate different population structures.
The major enhancements of the PGA to the plain genetic algorithm are
the spatial population structure, the distributed selection and the local hill-
climbing. The individuals are active. They look for a partner for mating in
their neighborhood. The partner is chosen according to the preference of
the individuals. The best individual in a neighborhood has the chance to
get as many offspring as the global best individual of the population. The
PGA therefore has a very “soft” selection scheme. Each individual has the
chance that on average 50% of its genes are contained in the chromosome
of an offspring. The offspring replaces the parent. In order not to complicate
the simulations the individuals are not allowed to improve their fitness by
learning. This means their strategy is fixed during their lifetime.
We now turn to the problem of genetic representation of strategies.

1.5.2 The genetic representation

There are at least two obvious ways to represent strategies as a genetic chro-
mosome, one is based on a simple table lookup, the other on finite automa-
ton. We will discuss in this paper deterministic table lookup strategies. A
k-lookback strategy can be defined as a mapping of the outcome of the last
k moves into a new move. In the simplest case of just looking one play back,
a strategy can be defined by four entries in a table symbolizing the four pos-
sible moves of the last game - DD,DC,CD,CC. In addition two bits are nec-
essary to specify the first move. The genetic representation of one-lookback
thus consists of six bits. This gives 26 different genotypes. Three popular
strategies are given below

strategy
C * * * C C ALL-C
D * D D * * ALL-D
C * D C D C TIT-FOR-TAT

The sign * denotes that the allele on this locus does not have any influence
on the performance of the strategy. The ALL-C strategy in row one is de-
fined as follows. The player starts with C, then only two outcomes are pos-
sible, CD or CC. In both cases the player plays C. The outcomes DD and DC
are not possible, therefore the entries in these columns are irrelevant. Alto-
gether there are twelve different bit-strings which define an ALL-C strategy.
The problem of this straightforward genetic representation is that we have
a distinction between the representation and the interpretation. The program
which interprets the representation is not part of the genetic specification
and therefore not subjected to the evolution process.

But we have a clear distinction between genotype, phenotype and behav-
ior. The genotype is mapped into some phenotype, the phenotype together
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with the environment (in our case the other phenotypes) defines the strat-
egy. Let us take the famous TIT-FOR-TAT as an example. In TIT-FOR-TAT
the player makes the move the opponent made the game before. In an en-
vironment where only C is played, TIT-FOR-TAT cannot be distinguished
from an ALL-C player. A different behavior can only be recognized if there
exists an individual who occasionally plays D.

The mapping from genotype to phenotype is many-to-one. This makes a
behavior oriented interpretation of a given genetic representation very dif-
ficult. There exist no simple structure of the genotype space. The Hamming
distance between two ALL-C genetic representations can be as large as four,
whereas the Hamming distance between two very different strategies like
ALL-C and ALL-D can be as small as one. An example is shown below

strategy
C C D D C C ALL-C
C C D D C D ALL-D

If we assume that the genetic operators mutation and crossing-over uni-
formly explore the genotype space, then strategies like ALL-C and ALL-D
will have a much higher chance to be generated than other strategies which
are less often represented. The genetic search is therefore biased by the ge-
netic representation. We believe that this effect is not a shortcoming of the
chosen representation, but that this feature models real life evolution. The
evolution has always to work within the constraints it creates for itself.

The complex mapping between genotype and phenotype makes it dif-
ficult to estimate the outcome of a genetic operator. For example, a win-
ning strategy may be crossed with a losing strategy, giving in most cases
a new strategy. An ALL-D strategy which is crossed-over with an ALL-C
strategy gives with probability 0.2 ALL-D and with probability 0.2 ALL-C.
With probability 0.6 we get a strategy which is different from the strategies
of the parents.

We believe that in our artificial ecology the crossover operator is too dis-
ruptive compared to real evolution. The same problem occurs if the genetic
representation is based on a finite automaton. In order to solve this problem
we have to find a genetic representation which is based on a more complex
genetic machinery than simple bit-strings. It is outside the scope of this pa-
per to discuss this genetic machinery. We only want to mention that we have
to incorporate some ideas of genetic models of self-reproduction proposed
already in the 60’s.

The influence of spatial population structures is independent of the ge-
netic representation, therefore we will concentrate on this subject.

1.5.3 Mathematical analysis of structured populations in
evolutionary games

Before we discuss some of the simulation results in detail we want to show
by a simple analysis how a spatial population structure influences the devel-
opment of strategies. For simplicity we assume that we have a population,
consisting of inhabitants playing strategy I and invaders playing strategy J.
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Let 0 < s < 1 be the proportion of invaders. We assume that s is very small.
Furthermore the invaders are clustered. We model this fact by a clustering
factor 0 < k ≤ 1/s.

Let P (I, J) denote the payoff of an individual playing strategy I against
an individual playing strategy J . After invasion the fitness of the inhabi-
tants F (I) is given by the outcomes of plays with each other and against the
invaders. Computing the fraction of each of the games we obtain

F (I) = (1− s ∗ 1− ks
1− s ) ∗ P (I, I) + s ∗ 1− ks

1− s P (I, J) (1.6)

The fitness of the invaders is given by

F (J) = (1− ks) ∗ P (J, I) + ks ∗ P (J, J) (1.7)

We see that for k = 0 the invaders play against the inhabitants only, the
case k = 1 gives the panmictic population normally considered in the the-
ory of evolutionary games. Here the plays are performed according to the
frequency of the actors. In the case of k > 1 we have a clustering effect.
The players play more often within their groups (inhabitants, invaders). For
k = 1/s the effect is most dramatic. The mixed terms with P (i, J) vanish,
thus the invaders and the inhabitants play within their group only. This is
a very crude model of a structured population, but it can be used to show
some important points.

A strategy is called collective stable if no strategy can invade it. A new
strategy is said to invade if the newcomer gets a higher score than the native
strategy, this means that F (I) < F (J). In order to obtain a simple formula,
we assume that s is small approximate F(I) by P (I, I). Thus the small num-
ber of plays between inhabitants and invaders is ignored. We get

P (I, I) < (1− ks)P (J, I) + ks ∗ P (J, J) (1.8)

It is now easily seen that even ALL-C can withstand the invasion of ALL-
D, if there is a strong preference for each strategy to play only against each
other. With our payoff values we obtain that ALL-C will not be invaded by
ALL-D if k > 0.5s−1. But also the other invasion is possible. ALL-C can in-
vade an ALL-D population as long as they ”stick together”. This means they
play, even after the invasion, much more against each other than against
ALL-D. 4

In a one-dimensional spatial population structure with fixed neighbor-
hoods the situation is more difficult. The contest between the strategies hap-
pens at the boundary of the neighborhoods, whereas the individuals in the
interior play only against members of their own group. In this spatial struc-
ture the success of the invasion is therefore totally determined by the out-
comes at the boundary.

It is almost impossible to investigate realistic spatial population struc-
tures by analytical methods, one has to use simulations. This was first done
by Axelrod ((1), pp. 158-168). Axelrod investigated a simple 2-D structure
where each player had four neighbors. The selection was very strong. If
a player had one or more neighbors which had been more successful, the

4 If we set p = ks then the above inequality is identical to Axelrod’s p-cluster invasion
((1),p.212).



16 Heinz Mühlenbein

player converted to the strategy of the most successful of them. Axelrod’s
major conclusion was that mutual cooperation can be sustained in a (not too
highly connected) territorial system at least as easy as it can be in a freely
mixing system. We will extend Axelrod’s work. First, different population
structures are compared and second, the strategies evolve controlled by the
genetic algorithm.

1.5.4 Simulation results

In our simulation we have investigated the following population structures

• a small panmictic population
• a large panmictic population(500 individuals)
• a one-dimensional population (ring structure with four neighbors)
• the continent-island cycle: a cycle between ten islands populations and a

panmictic population
• a competition between five population structures

In a panmictic population each individual plays against each other, in a
spatial population structure the individuals play only against their neigh-
bors. Most of the experiments have been done with a small population of
50 individuals. Detailed simulation results can be found in (3). We outline
in this paper only the major facts supporting or disproving Darwin’s argu-
ment. In our simulations we used 2-lookback strategies. They can be coded
by 20 bits. This gives 220 different genotypes.

The figures show individual runs which are “representative”. Each indi-
vidual experiment has been repeated 10 times. The results are qualitative
as described. The figures are what we believe “average” runs. Because of
the stochastic nature of the individual runs ( especially the runs with small
populations ) it makes no sense to average the fitness over the 10 different
runs. A small panmictic population for instance occasionally changes to a
non-cooperative behavior for a certain time. The time when this will hap-
pen cannot be predicted.

For a qualitative investigation we used the average fitness of the pop-
ulation. Batz (3) has used more difficult measures like the distribution of
classes of strategies. Given the pay-off table theoretical research indicates
that strategies like TIT-FOR-TAT (TFT) are evolutionary stable, leading to
an average fitness of three.

The difference between a large panmictic population and a small one is
shown in figures 1.1 and 1.2. The simulation of the large population started
with three predefined strategies - 5 ALL-D, 490 ALL-C and 5 TFT. The pop-
ulation heads first to non-cooperative behavior. Then ALL-D is beaten by
TFT. The population arrives at cooperation in generation 45.

Similarly the small population started with 5 ALL-D, 40 ALL-C and 5
TFT. The small panmictic population oscillates, but is also heads first to non-
cooperative behavior. It arrives at cooperation at generation 65.

The result of this experiment can be explained mathematically. The initial
fitness of the strategies can easily be computed. In the small population the
fitness of ALL-D is given by

F (ALL−D) = (4 + 200 + 5)/49 = 4.27
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Similarly we obtain F (TFT ) = 2.84 and F (ALL − C) = 2.69. Thus ALL-
D first increases by eliminating ALL-C. Then ALL-D is conquered by TFT.
For the large population we get F (All − D) ≈ 5, F (TFT ) ≈ 3, F (ALL −
C) ≈ 3. The difference of the fitness between ALL-D and TFT is larger in
the large population. This explains the rapid increase of ALL-D in the large
population at the beginning.

The ring population oscillates as shown in figure 1.3. The selection scheme
of the PGA is too soft for this population structure. In order to implement a
higher selection pressure we introduced an acceptance test of the offspring.
In the first scheme the offspring replaced the parent only if it won the IPD
against the parent. The effect was dramatical. Now the population always
settled on non-cooperative behavior. The situation changed with our second
scheme. This extension we called the family game. Each mating produces two
offspring. After the mating the family consisting of the two parents and the
two offspring plays an IPD tournament. The winner replaces the parent.
With this selection scheme the population settled on cooperative behavior.
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Fig. 1.3 Ring population

The explanation of this result is simple. In the IPD non-cooperative strate-
gies can be eliminated if the cooperative individuals stick together. In a sin-
gle contest, ALL-D can never be beaten. It is outside the scope of this paper
to compare the family game with kin selection proposed in sociobiology (55).

In figure 1.4 the continent-island cycle is shown. One easily recognizes the
cycle (20 generations island, 20 generations continent). During the continent
phase the variance is reduced, during the island phase it is increased.

In figure 1.5 the average fitness of the population is shown for five dif-
ferent population structures. The simulation started with a homogeneous
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ALL-D population. We investigated whether the populations will change to
cooperation. We see that the population which is subjected to the continent-
island cycle is first to arrive at cooperation. This result was consistent in ten
runs. A closer analysis of the strategies showed that the winning cooperative
strategies are not naive like ALL-C, but they resemble TIT-FOR-TAT.

In a further set of experiments we changed the game during the course
of the simulation, for instance we changed the IPD to the chicken game. The
spatial structured populations adapted much faster to the new game than
a large panmictic population. This is one of the extensions that have been
already proposed by Axelrod for investigation ((1), p.221).

1.5.5 The punctuated equilibrium theory

In our simulation, we observe rapid changes in fitness, followed by long
intervals of small fluctuations. This offers some support for a view of evo-
lution called punctuated equilibrium (16). This concept was controversial in
evolutionary biology for some time, but it has now many supporters. Let us
describe the theory and its historical context.

During the years of Darwin’s apprenticeship in science there has been an
intense conflict in geological circles between adherents of rapid and gradual
changes of the fossil record. There is no doubt that Darwin strictly favored
gradualism in his writing.
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This posed a dilemma to paleontologist. In order to favor gradual changes
by natural selection, they had to view the empirical data as so incomplete
that the process of natural selection cannot be observed.

Gould and Eldredge abandoned this view by rejecting gradualism. They
observed in the history of most fossil species two features particularly in-
consistent with gradualism:

• Stasis: Most species exhibit no directional change during their tenure on
earth. They appear in the fossil record looking much the same as when
they disappear; morphological change is usually limited and direction
less.

• Sudden appearance: In any local area, a species does not arise gradually
by the steady transformation of its ancestors; it appears all at once and
’fully formed’.

This behavior they called punctuated equilibrium. It explains the fossil
record. The evolutionary forces responsible for this behavior are still con-
troversial discussed. In all simulations the time of changes (indicated by a
change in average fitness) is small compared to the time of the equilibrium.
We next turn to a different application of the PGA, the solution of difficult
combinatorial problems.
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1.6 Combinatorial optimization by the PGA

Most applications of genetic algorithms are optimization problems. Here a
static fitness function is used derived from the optimization problem. The
search strategy of the PGA is driven by three components - the spatial popu-
lation structure, the crossover operator and the hill-climbing strategies. The
spatial structure has been discussed in the previous section. In this section
we concentrate on the problem dependent aspect, the crossover operator
and the local hill-climbing.

There have been attempts to “prove” that genetic algorithms make a
nearly optimal allocation of trials. This result is called the “Fundamental
Theorem of Genetic Algorithms” (Goldberg (13)) We have shown already in
(34) that the above claim is only valid for simple optimization problems. In
fact, in (37) we have proven a correct schema theorem, based on Boltzmann
selection and our Estimation of Distribution family of algorithms (29; 36).

The search strategy of a genetic algorithm can be explained in simple
terms. The crossover operator defines a scatter search (12) where new points
are drawn out of the area which is defined by the old or “parent” points.
The more similar the old parent are, the smaller will be the sampling area.
Thus crossing-over implements an adaptive step-size control.

But crossing-over is also exploring the search space. Let us assume that
the combinatorial problem has the building block feature. We speak of a build-
ing block feature if the substrings of the optimal solutions are contained in
other good solutions. In this case it seems a good strategy to generate new
solutions by patching together substrings of the old solutions. This is exactly
what the crossover operator does.

1.6.1 The Traveling Salesman Problem

The major difficulty for applying the PGA to combinatorial problems is to
define a crossover operator which creates valid solutions i.e. solutions which
fulfill the constraints of the problem. We will explain this problem first with
the TSP.

THE TRAVELING SALESMAN PROBLEM

OPT 1 (TSP) Given are n cities. The task of the salesman is to visit all cities once
so that the overall tour length is minimal.

This problem has been investigated in (35; 14; 15; 34) with the PGA. The
genetic representation is straightforward. The gene at locus i of the chromo-
some codes the edge (or link) which leaves city i. With this coding, the genes
are not independent from each other. Each edge may appear on the chromo-
some only once, otherwise the chromosome would code an invalid tour. A
simple crossing-over will also give an invalid tour. This is the reason why
this simple genetic representation has not been used in genetic algorithms.
The researchers tried to find a more tricky representation in order to apply
a simple crossover operator.

We take the opposite approach. We use a simple representation, but an in-
telligent crossover operator. Our crossover operator for the TSP is straight-
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forward. It inserts part of chromosome A into the corresponding location at
chromosome B, so that the resulting chromosome is the most similar to A
and B. A genetic repair operator then creates a valid tour.

We call our crossover operator MPX, the maximal preservative crossover
operator. It preserves sub-tours contained in the two parents. The pseu-
docode is given below.

PROC crossover (receiver, donor, offspring)

Choose position 0 <= i < nodes and length blow <= k <= bup randomly.
Extract the string of edges from position i to position j = (i + k) MOD nodes from the
mate (donor). This is the crossover string.
Copy the crossover string to the offspring.
Add successively further edges until the offspring represents a valid tour.
This is done in the following way:

IF an edge from the receiver parent starting at the last city in the offspring is possible
(does not violate a valid tour)
THEN add this edge from the receiver
ELSE IF an edge from the donor starting at the last city in the offspring is possi-
ble
THEN add this edge from the donor
ELSE add that city from the receiver which comes next in the string, this adds a
new edge, which we will mark as an implicit mutation.

We want to recall, that in the PGA the crossover operator is not applied to
all TSP configurations, but only to configurations which are a local minima.
Our local search is a fast version of the 2-opt heuristic developed by Lin
(28). It is a 2-opt without checkout. It gives worse solutions than 2-opt, but
the solution time scales only linearly with the number of cities.

We have later found that the efficiency of the PGA increases with the qual-
ity of the local search. But the major goal of the PGA work on the TSP was
to investigate the problem independent aspects i.e. the population structure
and the selection schedule. Therefore many generations were needed, which
could only be obtained by a fast local search method.

We turn to a popular benchmark problem, the ATT-532 problem solved
to optimality in (42). The PGA with a population size of 64 and truncated
2-opt as local search method got a tour length of 0.10% above optimal in ten
runs of t = 1080s (1000 generations,15000 local searches) on a 64 processor
system, the average final tour length was 0.19% above optimal (14). This is
a substantial improvement over the results in (50) for genetic 2-opt search.
It demonstrates the robustness of the parallel genetic algorithm. The PGA
finds good solutions with a simple local search also.

This implementation had some influence in the development of heuristics
for the TSP. There is a section about the different PGA implementation in
Johnson and McGeoch’s seminal paper (26).

We will compare our heuristic with a very fast and efficient heuristic pro-
posed by Johnson (24). It is called iterated Lin-Kernighan search. In his imple-
mentation a new start configuration is obtained by an unbiased 4-opt move
of the tour at hand. Then a new L-K search is started. If the search leads to a
tour with a smaller tour length, the new tour is accepted.

Johnson reports the following results. In time t = 2700s (500 L-K searches)
the optimal tour (length 27686) was output 6 of 20 IterL-K runs, the average
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final tour-length was 0.05% above optimal. Multiple L-K runs gave much
worse results. A single L-K run averages 0.98% above optimal in time t =
120s. 100 L-K runs gave a tour length of 0.25% above optimal. It needed
20000 L-K runs (t = 530hours) to obtain a tour of length 27705.

Why is IterL-K more efficient than independent L-K runs? The success
of IterL-K depends on the fact that good local L-K minima are clustered
together and not randomly scattered. The probability to find a good tour is
higher nearby a good tour than nearby a bad tour.

We have shown in (34) that 2-opt local minima are clustered. Furthermore
we could show the following relation: The better the solutions are, the more
similar they are. This relation is the reason for the success of Johnson’s IterL-
K. The relation holds, if the problem has the building block feature, which is
necessary for the success of the crossover operator of our genetic algorithm.

Iterated hill-climbing needs a fine tuned mutation rate to get with high
probability to the attractor region of a new local minimum. In the TSP case
Johnson found that a simple 4-opt move is sufficient. In other combinatorial
problems it is more difficult to find a good mutation rate and a good local
heuristic like the Lin-Kernighan search for the TSP. Therefore we share the
opinion of Johnson that the TSP is in practice much less formidable than its
reputation would suggest (24). An in-depth evaluation of heuristics for the
solution of large TSP problems can be found in (26).

1.6.2 The Graph Partitioning Problem

We will now turn to another combinatorial problem, the graph partitioning
problem GPP. Here the Lin-Kernighan heuristic is not as good as in the TSP
case. We will show that the genetic search is very efficient for this problem.
The major obstacle is to find a suitable crossover operator.

THE GRAPH PARTITIONING PROBLEM

The m graph partitioning problem (m-GPP) is a fundamental problem which
arises in many applications. The GPP is to divide a given graph into a num-
ber of partitions (m) in order to optimize some criterion e.g. to minimize the
number of edges between partitions. More formally:
Let a graph G = (V,E,w) be given. V = {v1, v2, ..., vn} is the set of nodes,
E ⊆ V × V is the set of edges and w : E 7→ IN defines the weights of the
edges.
The m-GPP is to divide the graph into m disjunct parts, such that some opti-
mization criteria will be fulfilled. In this paper we will consider the follow-
ing optimization criteria:

OPT 2 (m-GPP) Let P = {P1, ..., Pm} be a partition. Let G = (g1g2...gn) denote
the partition to which the nodes belong (1 ≤ gi ≤ m). Then we look for

min
P

∑

1≤i<j≤n
gi 6=gj

wij

such that σ(P ) is minimal.
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σ(P ) is defined as

σ2(P ) =
1

m

m∑

i=1

|Pi|2 − (
1

m

m∑

i=1

|Pi)2

In order to solve the GPP, we have to define the genetic representation
and the genetic operators. In the simplest representation, the value (allele)
gi on locus i on the chromosome gives the number of the partition to which
node vi belongs. But this representation is highly degenerate. The number
of a partition does not have any meaning for the partitioning problem. An
exchange of two partition numbers will still give the same partition. All to-
gether m! chromosomes give the same fitness value.

F (G) =
∑

1≤i<j≤n
gi 6=gj

wij

All m! chromosomes code the same partitioning instance, the same ”phe-
notype”. The genetic representation does not capture the structure of the
problem. We did not find a better genetic representation, so we decided that
the crossover operator has to be ”intelligent”. Our crossover operator in-
serts complete partitions from one chromosome into the other, not individ-
ual nodes. It computes which partitions are the most similar and exchanges
these partitions. Mathematically spoken, the crossover operator works on
equivalence classes of chromosomes.

Figure 1.6 shows an example. The problem is to partition the 4×4 grid
into four partitions.

The crossover operator works as follows. Partition 2 has to be inserted
into B. The crossover operator finds, that partition 4 of B is the most similar
to partition 2 in A. It identifies partition 2 of A with partition 4 of B. Then it
exchanges the alleles 2 and 4 in chromosome B to avoid the problems arising
from symmetrical solutions. In the crossover step it implants partition 2 of
chromosome A into B.

After identifying all gen-loci and alleles which lead to a non-valid parti-
tion a repair operator is used to construct a new valid chromosome. Muta-
tion is done after the crossover and depends on the outcome of the crossover.
In the last step a local hill-climbing algorithm is applied to the valid chro-
mosome.

For local hill-climbing we can use any popular sequential heuristic. It
should be fast, so that the PGA can produce many generations. In order
to solve very large problems, it should be of orderO(n) where n is the prob-
lem size. Our hill-climbing algorithm is of order O(n2), but with a small
constant. In order to achieve this small constant, a graph reduction is made.
The general outline of our hill-climbing algorithm is as follows:

Local search for the GPP

1. Reduce the size of the graph by combining up to r nodes into one hyper-
node

2. Apply the 2-opt of Kernighan and Lin to the reduced Graph. For the GPP
it is defined as follows:

a. Select two hyper-nodes
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Fig. 1.6 The crossover operator for the m-GPP

b. Test if an exchange of this hyper-nodes gives a lower fitness
c. If this is the case, exchange the nodes
d. Terminate, if no exchange can be made over the set of nodes
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3. Expand the resulting graph
4. Create a valid partition
5. Apply a further local hill-climbing algorithm to the valid partition
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Fig. 1.7 Problem EVER918, 64 individuals

Step2 and step5 are of order O(n2). The constant is smaller than doing 2-
opt search on the original string. The above local search is only done for the
initial population. After the first generation we use a still faster search. We
apply 2-opt only to the nodes which have connections to outside partitions.

The general m-GPP problem has been studied seldom. More popular is
the the bi-partitioning problem. A detailed study of the bi-partitioning prob-
lem can be found in (25) In that paper random graphs and random geomet-
ric graphs up to 1000 nodes are used to compare different heuristics. We
decided to make a performance analysis with real life graphs. Furthermore
are we more interested in the general partitioning problem, not in the bi-
partitioning problem. Detailed results can be found in (53). Results for the
bi-partitioning problem using our new Factorized Distribution Algorithm
FDA can be found in (37).

We will give here the computational results for solving a large GPP
benchmark problems. The problem is called EVER918. It is a 3-D graph
which consists of 918 nodes and 3233 edges. It has to be partitioned into
18 partitions.

In figure 1.7 we show the progress of the PGA for problem EV ER918.
The progress is typical. The best progress is made at the beginning, then it
decays exponentially.

For EVER918 the PGA found the best solution computed so far (54). Fur-
ther investigations have indicated that it will be difficult to construct an ef-
ficient iterative Lin-Kernighan search for the m-GPP. First, the quality of an
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average L-K solution is bad for the GPP. Second, it is difficult to determine
a good mutation rate which jumps out of the attractor region of the local
minimum. This has been demonstrated in (54). There the following relation
was shown: the better the local minimum, the larger its attractor region.

In summary: The m-GPP problem is more difficult to solve than the TSP.
The PGA got results which are better than other known heuristics.

1.7 Continuous function optimization by competition

Optimization of multi-modal continuous functions was a notoriously diffi-
cult task for genetic algorithms. Sometimes good results have been achieved,
but for many benchmark problems genetic algorithms have not been com-
petitive with other methods. Therefore we developed an algorithm called
the Breeder Genetic Algorithm BGA. The BGA uses a real-valued representa-
tion (38; 39). Therefore a number of specialized mutation and recombination
operators have been implemented. These depend on parameters. In order to
automaticly adapt the parameters, competition between subpopulations us-
ing different parameters has been implemented. Detailed discussions of the
competition scheme can be found in (39; 46).

1.7.1 The BGA for Continuous Parameter Optimization

Let an unconstrained optimization problem be given on a domain D ⊂ <n

min(F (x)) ai ≤ xi ≤ bi i = 1, ..., n . (1.9)

The breeder genetic algorithm BGA was designed to solve the above
problem (38). The BGA uses a set of search strategies. An overview of search
strategies based on recombination can be found in (52) and (51). In (52) it
was shown that a new recombination scheme called fuzzy recombination
(FR) worked best as a breadth search. In this chapter we only describe the
BGA mutation scheme and the BGA line recombination which uses also the
mutation scheme.

BGA mutation BM(ρ, k, ν)

The BGA mutation scheme depends on the mutation range ρ, the precision
k and a new parameter ν which gives the number of neighboring variables
to be mutated. The standard BGA mutation (ν = 0) randomly selects just
one variable xi.

Given xi a new value zi is computed according to

zi = xi + ρi · δ(k) (1.10)

ρi is normally set to the domain of definition of variable xi. δ(k) is a ran-
dom variable which is computed as follows:

δ(k) = sign(α) · 2−k·|α| α = U(−1, 1)
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where U(u, v) denotes the uniform probability distribution with support
(v, w) ⊂ <.
k is called the precision constant. The smallest absolute value of δ(k) is

2−k, the highest value is 1.0. Therefore the step sizes of the BGA-mutation
are contained in the interval [ρi · 2−k; ρi].

The rationale of the BGA mutation scheme has been explained in (38). An
extension of the BGA-mutation is specified by its third parameter ν. Now
additionally to the randomly chosen variable xi also adjacent variables are
modified. The higher the distance to i the smaller is the change.

zi−j = xi−j + ρi−j · 2−j (1.11)
zi+j = xi+j + ρi+j · 2−j (1.12)

for j = 1, . . . ν

and i− j > 0, i+ j ≤ 0

where ∆ is the value of δ(k) generated for xi
The parameter ν defines the size of the neighborhood. It lies in the in-

terval [0;n]. For the standard BGA-mutation we have ν = 0. Note that the
mutation step decreases exponentially starting from variable xi. This is in
accordance to the design rationale of the BGA mutation.

BGA line recombination BLR(ρ, k)

The BGA line recombination uses components from both, mutation and
recombination. It creates new points in a direction given by the two parent
points. The placement of the point is done by the BGA mutation scheme.
It works as follows: Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be the par-
ent strings with x being the one with better fitness. Then the offspring
z = (z1, . . . , zn) is computed by

zi = xi + ρi · δ(k) · yi − xi‖x− y‖ (1.13)

The BGA line recombination may generate points which are far from the
given point xi.

1.7.2 Competition between Subpopulations

In order to automatically adapt the parameters, we had the idea to use sub-
populations each with a different set of parameters. The subpopulations
with high fitness should increase, the ones with low fitness should decrease.
Before implementing a scheme we looked if theoretical models could guide
us.

Ecology deals with the interaction of subpopulations and species. Un-
fortunately even the analysis of the interaction between two species can be
quite complicated, involving the effects of exterior and interior parameters.
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As a first approximation one may distinguish four basic situations — com-
petition, predator-prey, symbiosis and host-parasite.

The most popular equations for analyzing the interaction of species are
generalizations of the famous Lotka-Volterra equations. For two species they
are as follows (8)

dN1

dt
= r1 ·N1

(
1− N1

K1
− α12

N1

K2

)
(1.14)

dN2

dt
= r2 ·N2

(
1− N2

K1
− α21

N1

K2

)
(1.15)

Here N1, N2 denote the population sizes of the two species, r1, r2 are the
growth rates, K1,K2 the carrying capacities and α12, α21 the interaction co-
efficient. This equation has been studied intensively (8). It is very useful
for understanding the complex patterns which may arise by two interacting
species. For a competition scheme to be implemented these equations cannot
be used because the interaction coefficients cannot be specified in advance.
In analogy to the above model the following model has been implemented.

1.7.3 The Basic Competition Model of the BGA

Our competition scheme requires a quality criterion to rate a group, a gain cri-
terion to reward or punish the groups, an evaluation interval, and a migration
interval. The evaluation interval gives each strategy the chance to demon-
strate its performance in a certain time window. By occasional migration
of the best individuals groups which performed badly are given a better
chance for the next competition. The sizes of the groups have a lower limit.
Therefore no strategy is lost. The number of competing subpopulations (S)
depends on the set of strategies used in the competition. Normally the num-
ber of groups is between 2 and 8.

Our quality criterion (Q) is based on the fitness of the best individual of
the group. To avoid an inefficient oscillation of group sizes we use informa-
tion about the last ω competitions for the evaluation. The vector w ∈ Nω

provides the winners of the last ω competitions. wk ∈ {1, . . . , S} contains
the winner of the k-last competition.

The following formula describes the quality of group i. k = 0 denotes the
current competition, k = 1 the previous one, etc. The time window ω is 10.

Qi(w) =

ω−1∑

k=0

{
(ω − k)/ω : i = wk
0 : i 6= wk

(1.16)

The gain criterion (G) defines how the population size of each group is
modified according to its quality. Normally, the size of the group with the
best quality increases, the sizes of all other groups decrease. The following
scheme increases the size of the best group (w0) by the accumulated loss of
the others. The loss of a group is proportional to its population size. The loss
factor κ ∈ [0; 1] defines the rate of loss.
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The change of the population sizes is computed from the following equa-
tions:

∆Ni =





S∑
j=1,j 6=i

N t
j · κ :

Qi(w) > Qj(w)
∀j, j 6= i

−N t
i · κ : else

(1.17)

whereN t
i denotes the size of group i and S denotes the number of groups.

The loss factor κ is normally set to 0.125.
The population size of each group of the next generation is given by:

N t+1
i =

{
N t
i +∆Ni : N t

i +∆Ni ≥ Nmin

Nmin
i : else

(1.18)

The size of the population is only reduced if it is greater than the minimal
size Nmin.

This gain criterion leads to a fast adaptation of the group sizes. Each
group looses the same percentage of individuals.

The evaluation interval η and the migration interval θ are rather robust
external parameters. Normally we set η = 4 and θ = 16.

If one compares equations 1.17 with the generalized Lotka-Volterra equa-
tion 1.14 the following major difference can be observed. Our equations
are linear whereas the Lotka-Volterra equations contain the nonlinear term
Ni · Nj . The reason for this difference is that the Lotka-Volterra equations
model individual competition. If there are many predators and each one
captures two preys, then the reduction of the preys depends on the number
of predators. In contrast, our competition scheme evaluates whole groups
by taking the best individual as evaluation criterion.

The current competition scheme seems appropriate in cases when the
strategies used by the different groups differ substantially. Sometimes a
competition model might be better where even the size of the total popu-
lation may vary.

1.7.4 The Extended Competition Model

If search strategies differ very much they may also require a different pop-
ulation size to be efficient. It has been shown in (38) that mutation is most
efficient in small populations whereas recombination needs a larger popu-
lation size. This can be modeled by introducing growth rates which depend
on the group.

In our implementation we introduced a consumption factor γ for each
subpopulation. Biologically spoken a consumption factor specifies the con-
sumption of the limited resource by one individual of a species — the higher
the consumption factors the lower the number of individuals which can be
supported by that resource. We implemented this extension by introducing
a normalized population size Ñ .

Ñi = γi ·Ni (1.19)



1 Evolutionary Computation: Centralized, Parallel or Collaborative 31

The gain criterion of equation 1.17 is now applied to the normalized popu-
lation sizes. The sum of the normalized population sizes remains constant
because it is limited by the limited resource K.

S∑

i=1

Ñi = K (1.20)

For γi = 1.0 for i = 1, . . . , S we obtain the basic model.In contrast to the
basic model the sum of the real population sizes varies during a simulation.
This extended competition scheme is very useful for multi-modal problems
where it is useful to locate the region of attraction of the global (or a good
local) optimum by a breadth search and to do the fine adaptation by an
exploring strategy afterwards. In this case the strategy performing breadth
search gets a lower γ than the other strategy. So the total population size is
high at the beginning when the breadth search works and low at the end
when the fine adaption is done. So the whole population size is adapted
during the run by the competition model.

Numerical results for difficult test functions can be found in (46). A dis-
cussion about he evolution of the population sizes during a run can be found
in (45).

1.8 Conclusion

Complex spatial population structures are seldom used in evolutionary
computation. In this chapter we have investigated the stepping-stone model,
competing sub-populations, and Darwin’s continent-island cycle. For Dar-
win’s conjecture an evolutionary algorithm was used where the fitness of
each individual is given by the competition with other individuals. The
competition is modeled by evolutionary games. The parallel genetic algo-
rithm PGA uses the stepping-stone interaction. It runs totally in parallel.
The selection is distributed and done by each individual in its neighbor-
hood. Faster convergence can be obtained by the Breeder Genetic Algorithm
BGA. It models breeding as it is done by a human breeder. For really diffi-
cult optimization problems the competing BGA has been developed. It uses
competing sub-populations which are bred using different strategies. Occa-
sionally good individuals migrate to other sub-populations. The sizes of the
sub-populations are adjusted according to their performance.

Darwin’s cycle model seems also a good starting point for investigating
the development of new ideas in human societies, be it in science or art. It
takes small groups or even a single individual to try out new ideas. But for
the ideas to be accepted a large community is needed. In a large community
many individuals evaluate the new ideas, only the most promising eventu-
ally survive.
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