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Abstract
Simulating evolution as seen in nature has been identified as one of the key computing paradigms for the new decade. Today evolutionary
algorithms have been successfully used in a number of applications. These include discrete and continuous optimization problems, synthesis
of neural networks, synthesis of computer programs from examples (also called genetic programming) and even evolvable hardware. But
in all application areas problems have been encountered where evolutionary algorithms performed badly. In this survey we concentrate on
the analysis of evolutionary algorithms for optimization. We present a mathematical theory based on probability distributions. It gives the
reasons why evolutionary algorithms can solve many difficult multi-modal functions and why they fail on seemingly simple ones. The theory
also leads to new sophisticated algorithms for which convergence is shown.

1 Introduction

We first introduce the most popular algorithm, the simple ge-
netic algorithm. This algorithm has many degrees of free-
dom, especially in the recombination scheme used. We show
that all genetic algorithms behave very similar, if recombina-
tion is done without selection a sufficient number of times be-
fore the next selection step. We correct the classical schema
analysis of genetic algorithm. We show why the usual schema
theorem folklore is mathematically wrong. We approximate
genetic algorithms by a conceptual algorithm. This algo-
rithm we call the Univariate Marginal Distribution Algorithm
����, which is analyzed in Section 3. We compute the dif-
ference equation for the univariate marginal distributions un-
der the assumption of proportionate selection. This equation
has been proposed in populations genetics by Sewall Wright
as early as 1937 [Wri70]. This is an independent confirma-
tion of our claim that���� approximates any genetic algo-
rithm. Using Wright’s equation we show that ���� solves
a continuous optimization problem. The function to be opti-
mized is given by the average fitness of the population.

Proportionate selection is far too weak for optimization.
This has been recognized very early in breeding of livestock.
Artificial selection as done by breeders is a much better model
for optimization than natural selection modelled by propor-
tionate selection. Unfortunately an exact mathematical anal-
ysis of efficient artificial selection schemes seems impossible.
Therefore breeders have developed an approximate theory,
using the concepts of regression of offspring to parent, her-
itability and response to selection. This theory is discussed
in Section 4. At the end of the section numerical results are
shown which show the strength and the weakness of ����
as a numerical optimization method.

���� optimizes very efficient some difficult optimiza-
tion problems, but it fails on some simple problems. For these
problems higher order marginal distributions are necessary
which capture the nonlinear dependency between variables.

In Section 5.2 ���� is extended to the Factorized Distri-
bution Algorithm ���. We prove convergence of the al-
gorithm to the global optima if Boltzmann selection is used.
The theory of factorization connects ��� with the theory of
graphical models and Bayesian networks. We derive a new
adaptive Boltzmann selection schedule SDS using ideas from
the science of breeding.

In Section 6.1 we use results from the theory of Bayesian
networks for the Learning Factorized Distribution Algorithm
����, which learns a factorization from the data. We make
a preliminary comparison between the efficiency of ���
and ����.

In Section 7 we describe the system dynamics approach to
optimization. The difference equations obtained for ����
are iterated until convergence. Thus the continuous opti-
mization problem is mathematically solved without using a
population of points at all. We present numerical results
for three different system dynamics equations. They con-
sists of Wright’s equation, the diversified replicator equation
and a modified version of Wright’s equation which converges
faster.

In the final section we classify the different evolutionary
computation methods presented. The classification criterion
is whether a microscopic or a macroscopic model is used for
selection and/or recombination.

2 Analysis of the Simple Genetic Algorithm

In this section we investigate the standard genetic algorithm,
also called the Simple Genetic Algorithm (SGA). The algo-
rithm is described by Holland [Hol92] and Goldberg [Gol89].
It consists of

� fitness proportionate selection

� recombination/crossover

� mutation



Here we will analyze selection and recombination only. Mu-
tation is considered to be a background operator. It can
be analyzed by known techniques from stochastics [MSV94,
Müh97].

There have been many claims concerning the optimization
power of ���. Most of them are based on a rather qualita-
tive application of the schema theorem. We will show the
shortcomings of this approach. Our analysis is based on tech-
niques used in population genetics. The analysis reveals that
an exact mathematical analysis of ��� is possible for small
problems only. For a binary problem of size 	 the exact anal-
ysis needs the computation of �� equations. But we propose
an approximation often used in population genetics. The ap-
proximation assumes that the gene frequencies are in linkage
equilibrium. The main result is that any genetic algorithm can
be approximated by an algorithm using 	 parameters only,
the univariate marginal gene frequencies.

2.1 Definitions

Let � � �
�� � � � � 
�� denote a binary vector. For notational
simplicity we restrict the discussion to binary variables 
� �
��� ��. We use the following conventions. Capital letters �

denote variables, small letters 
� assignments.
Definition 2.1. Let a function � � � � ��� be given. We
consider the optimization problem

���� � �	
������� (2.1)

We will use ���� as the fitness function for the ���. We

will investigate two widely used recombination/crossover
schemes.

Definition 2.2. Let two strings � and � be given. In one-
point crossover the string � is created by randomly choosing
a crossover point � � � � 	 and setting �� � 
� for � � � and
�� � �� for � � �. In uniform crossover �� is randomly chosen
with equal probability from �
�� ���.

Definition 2.3. Let ���� �� denote the probability of �
in the population at generation �. Then � ��
�� �� ��
�������

���� �� defines a univariate marginal distribution.

We often write ���
�� if just one generation is discussed. In
this notation the average fitness of the population and the vari-
ance is given by

���� �
�
�

���� ������

� ��� �
�
�

���� ��
�
����� ����

��
The response to selection ���� is defined by

���� � ���� ��� ���� (2.2)

2.2 Proportionate Selection

Proportionate selection changes the probabilities according to

���� �� �� � ���� ��
��
�
����

(2.3)

Lemma 2.1. For proportionate selection the response is
given by

���� �
� ���
����

(2.4)

Proof: We have

���� �
�
�

��
� ��
���
�
����

� ���� �
� ���
����

(2.5)

With proportionate selection the average fitness never de-
creases. This is true for every rational selection scheme.

2.3 Recombination

For the analysis of recombination we introduce a special dis-
tribution.

Definition 2.4. Robbins’ proportions are given by the distri-
bution �

��
� �� ��
��
���

���
�� �� (2.6)

A population in Robbins’ proportions is also called to be in
linkage equilibrium.

Geiringer [Gei44] has shown that all reasonable recombi-
nation schemes lead to the same limit distribution.

Theorem 2.1 (Geiringer). Recombination does not change
the univariate marginal frequencies, i.e. ���
�� � � �� �
���
�� ��. The limit distribution of any complete recombina-
tion scheme is Robbins’ proportions ����.

Complete recombination means that for each subset � of
��� � � � � 	�, the probability of an exchange of genes by re-
combination is greater than zero. Convergence to the limit
distribution is very fast. We have to mention an important
fact. In a finite population linkage equilibrium cannot be ex-
actly achieved. We take the uniform distribution as example.
Here linkage equilibrium is given by ���� � ���. This value
can only be obtained if the size of the population � is sub-
stantial larger than ��! For a population of � � ���� the
minimum deviation ���	�� from Robbins’ proportions is
already achieved after four generations, then ��� slowly in-
creases due to stochastic fluctuations by genetic drift. Ul-
timately the population will consist of one genotype only.
Genetic drift has been analyzed by Asoh and & Mühlenbein
[AM94b]. It will not be considered here.



2.4 Selection and Recombination

We have shown that the average ���� never decreases after se-
lection and that any complete recombination scheme moves
the genetic population to Robbins’ proportions. Now the
question arises: What happens if recombination is applied af-
ter selection. The answer is very difficult. The problem still
puzzles populations genetics [Nag92].

Formally the difference equations can be easily written.
Let a recombination distribution � be given. ���
� denotes
the probability that � and � produce 
 after recombination.
Then

���� �� �� �
�

��

���
��
��������� (2.7)

���
� denotes the probability of string 
 after selection.
For 	 loci the recombination distribution� consists of �����

parameters. Recently Christiansen and Feldman [CF98] have
written a survey about the mathematics of selection and re-
combination from the viewpoint of population genetics. A
new technique to obtain the equations has been developed by
Vose [Vos99]. In both frameworks one needs a computer pro-
gram to compute the equations for a given fitness function.

A mathematical analysis of the mathematical properties
of 	 loci systems is difficult. For a problem of size 	 we
have �� equations. Furthermore the equations depend on the
recombination operator used! If the gene frequencies remain
in linkage equilibrium, then only 	 equations are needed
for the marginal frequencies. Thus the crucial question is:
Does the optimization process gets worse because of this
simplification? The answer is no. We provide evidence for
this statement by citing a theorem from [Müh97]. It shows
that the univariate marginal frequencies are the same for all
recombination schemes if applied to the same distribution
���� ��.

Theorem 2.2. For any complete recombination/crossover
scheme used after proportionate selection the univariate
marginal frequencies are determined by

��
�� �� �� �
�

�������

���� ������
����

� (2.8)

Proof: After selection the univariate marginal frequencies are
given by

���
�� �� �
�

�������

����� �� �
�

�������

���� ������
����

�

Now the selected individuals are randomly paired. Therefore

���
�� �� �� � ��� �
�� ���

2.5 Schema Analysis Demystified

Theorem 2.2 can be formulated in the terms of Holland’s
schema theory [Hol92]. Let ��
�� � ��� � � � � �� 
�� �� � � � � ��
be a first-order schema at locus �. This schema includes all

strings where the gene at locus i is fixed to 
�. The univari-
ate marginal frequency ��
�� �� is obviously identical to the
frequency of schema ��
��. The fitness of the schema at
generation � is given by

����
��� �� �
�

���
�� ��

�
�������

���� ������ (2.9)

From Theorem 2.2 we obtain:

Corollary 2.1 (First-order schema theorem). For a genetic
algorithm with proportionate selection using any complete
recombination the frequency of first-order schemata changes
according to

���
�� �� �� � ���
�� ��
����
��� ��
�����

(2.10)

We now extend the analysis to general schemata.

Definition 2.5. Let �� � �
�� � � � � � 
��� 	 �
�� � � � � 
��.
Thus �� denotes a subvector of � defined by the indices
��� � � � � ��. Then the probability of schema ���� is defined
by

������� �� �
�

�������

���� �� (2.11)

The summation is done by fixing the values of ��. Thus
the probability of a schema is just the corresponding marginal
distribution �����. If �� consists of a single element only, we
have a univariate marginal distribution.

SGA uses fitness proportionate selection, i.e. the proba-
bility of � being selected is given by

����� �� � ���� ��
����
� ���

(2.12)

���� �
�

� ���� ������ is the average fitness of the pop-
ulation. Let us now assume that we have an algorithm which
generates new points according to the distribution of selected
points, i.e.

���� �� �� � ���� ��
����
����

(2.13)

We will later address the problem which probability dis-
tribution SGA really generates.

Definition 2.6. The fitness of schema ����� is defined by

�������� �� �
�

�������

���� ��

������� ��
���� (2.14)

Theorem 2.3 (Schema Theorem). The probability of
schema ���� is given by

������� �� �� � ������ ���
������� ��
����

(2.15)



Holland ([Hol92] Theorem 6.2.3) computed for SGA an
inequality

������� �� �� 
 ��� Æ�������� ��
������� ��
����

(2.16)

Æ is a small factor. The inequality complicates the ap-
plication. But a careful investigation of Holland’s analysis
[Hol92] reveals the fact, that the application is much simpler
if equation (2.14) is used instead of the inequality. Thus equa-
tion (2.14 is obviously the ideal starting point for Holland’s
schema analysis.

2.6 Schema Analysis Folklore

The mathematical difficulty of using the inequality (2.16) to
estimate the distribution of schemata lies in the fact that the
fitness of a schema depends on ���� ��, i.e the distribution of
the genotypes of the population. This is a defining fact of
Darwinian natural selection. The fitness is always relative to
the current population. To cite a proverb: the one-eyed is the
king of the blinds.

Thus an application of the inequality (2.16) is not possible
without computing ���� ��. Goldberg [Gol89] circumvented
this problem by assuming

������� �� 
 �� � �� ���� (2.17)

With this assumption we estimate ������� �� 
 �� �
���������� ��. But the assumption can never be fulfilled
for all �. When approaching an optimum, the fitness of all
schemata in the population will be only � � � away from the
average fitness. Here proportionate selection gets difficulties.

The typical folklore which arose from the schema analysis
is nicely summarized by Ballard. He is not biased towards or
against genetic algorithms. He just cites the commonly used
arguments ([Bal97], p.270).

� Short schemata have a high probability of surviving the
genetic operations.

� Focusing on short schemata that compete shows that,
over the short run, the fittest are increasing at an expo-
nential rate.

� Ergo, if all of the assumptions hold (we cannot tell
whether they do, but we suspect they do), GAs are opti-
mal.

We will not investigate the optimality argument, because
we will show that the basic conclusion of exponential increas-
ing schemata does not hold.

2.7 Correct Schema Analysis

It turns out that equation 2.13 for proportionate selection ad-
mits an analytical solution.

Theorem 2.4 (Convergence). The distribution ���� �� for
proportionate selection is given by

���� �� �
���� ��������

 ���� ������

�
(2.18)

Let � be the set of global optima, then

���
���

���� �� �

�
� ��� � ��

� else
(2.19)

Proof: The proof is by induction. The assumption is ful-
filled for � � �. Then

���� �� �� �
���� ����������
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Let �	�� �� and ���� � ���	���. Then

���� ��

���	��� ��
�

���� �������

���	��� �����	����
� �

QED.
This shows that our algorithm is ideal in the sense that it

even converges to the set of global optima.

2.8 Application of the Schema Equation

By using equation (2.18) we can make a correct schema anal-
ysis. We compute the probabilities of all schemata. We just
discuss the interesting case of a deceptive function. We take
the 3-bit deceptive function defined by

!"�"���� � ���� ����
� � 
� � 
	�

� ����
�
� � 
�
	 � 
�
	� � ���
�
�
	

The function is called deceptive because the global opti-
mum ��� �� �� is isolated, whereas the local optimum ��� �� ��
is surrounded by strings of high fitness. We now look at the
behavior of some schemata.

Definition 2.7. A schema is called optimal if its defining
string � is contained in an optimal string.

In our example ��� � �� and ��� � � � �� are
optimal schemata. They are displayed in Figure 1. We see
that the probability of the optimal schema ����� � �� de-
creases for about 8 generations, then it increases fairly slowly.
This behavior is contrary to the simple interpretation of the
evolution of schemata. Schema ��� � � � �� decreases
even dramatically at the first generation. Then its probability
is almost identical to the probability of the optimum ��� �� ��.
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Figure 1: Evolution of some schemata

Remark: Even the probability of optimal schemata can de-
crease for a long time. It depends on the probability distri-
bution, if the optimal schemata will increase. Any argument
about an exponential increase of optimal schemata is mathe-
matically wrong.

3 The Univariate Marginal Distribution Algo-
rithm ����

The univariate marginal distribution algorithm ���� gen-
erates new points according to ���� �� �

��
��� �

�
� �
�� ��.

Thus ���� keeps the gene frequencies in linkage equi-
librium. This makes a mathematical analysis possible. We
derive a difference equation for proportionate selection. This
equation has already been proposed by Sewall Wright in 1937
[Wri70]. Wright’s equation shows that ���� is trying to
solve a continuous optimization problem. The continuous
function to be optimized is the average fitness of the popu-
lation # ���. The variables are the univariate marginal dis-
tributions. In a fundamental theorem we show the relation
between the attractors of the continuous problem and the lo-
cal optima of the fitness function ����.

3.1 Definition of ����

Instead of performing recombination a number of times in or-
der to converge to linkage equilibrium, one can achieve this in
one step by gene pool recombination [MV96]. In gene pool
recombination a new string is computed by randomly taking
for each loci a gene from the distribution of the selected par-
ents. This means that gene 
� occurs with probability ��� �
��
in the next population. ��� �
�� is the distribution of 
� in the
selected parents. New strings � are generated according to
the distribution

���� �� �� �

��
���

��� �
�� �� (3.1)

One can simplify the algorithm still more by directly comput-
ing the univariate marginal frequencies from the data. Then

Equation 3.1 can be used to generate new strings. This
method is used by ����.

UMDA

� STEP 0: Set � �. Generate� � � points randomly.

� STEP 1: Select� � � points according to a selection
method. Compute the marginal frequencies ��� �
�� �� of
the selected set.

� STEP 2: Generate � new points according to the dis-
tribution
���� �� �� �

��
��� �

�
� �
�� ��. Set � �� �.

� STEP 3: If termination criteria are not met, go to
STEP 1.

For proportionate selection we need the average fitness of the
population ����. We consider ���� as a function which de-
pends on ��
��. To emphasize this dependency we write

# ����� � ��� ��� � ��� � � � � ���� � ��� �� ����
(3.2)

# formally depends on �	 parameters. � ��� � �� and
���� � �� are considered as two independent parameters
despite the constraint ���� � �� � � � ���� � ��.
We abbreviate �� �� ���� � ��. If we insert � � ��
for ���� � �� into # , we obtain �# . �# depends on n
parameters. Now we can formulate the main theorem.

Theorem 3.1. For infinite populations and proportionate se-
lection the difference equations for the gene frequencies used
by UMDA are given by

���
�� �� �� � ���
�� ��
���
�� ��

# ���
� ���
�� ��

��
�������

# ���
(3.3)

where ���
�� �� �
�
�������

����
��

� ��� ��
� � ��. The equa-
tion can also be written as

����� �� � ����� � �������� ������

� 
�
���

�# ���
(3.4)

The reponse is approximately given by

���� �
�����
�#

�
�

�

�
����

$� � $�
�# �

%�#

%��%��
� ��� (3.5)

� ���� �
�
�

����� �������� ��� �# �� � ����� �������� ��� �# ��

(3.6)

$� � �������� ������
% �#

%��

� ���� is called the additive genetic variance. Furthermore
the average fitness never decreases.



Proof: Equation 3.3 has been proven in [Müh97]. We have
to prove Equation 3.4. Note that

����� ��� ����� � �����
���
� � �� ��� �# ���

�# ���

Obviously we have

% �#

%��
� ��
� � �� ��� ��
� � �� ��

From ����� ���
� � �� �� � ��� ������ ���
� � �� �� � �# ����
we obtain

��
� � �� ��� �# ���� ��� ������ � �
� � �� ��

� ��� ������ � �
� � �� �� � �

This gives

���
� � �� ��� �# ��� � ��� ������
% �#

%��

Inserting this equation into the difference equation gives
Equation 3.4.

Equation 3.5 is just the beginning of a multi-dimensional
Taylor expansion. The first term follows from

�
�

������ ��� ������
% �#

%��
�
�
�

�������� ������

�
% �#

%��

	�

�
�
�

����������� ��� �# ������� ��� �# � �# � ����� ���

�
�
�

����������� ��� �# �� � ��� ������������ ��� �# �

� � ����

The above equations completely describe the dynamics
of UMDA with proportionate selection. Mathematically
UMDA performs gradient ascent in the landscape defined by
# or �# .

Equation 3.4 is especially suited for the theoretical anal-
ysis. It is called Wright’s equation because it has been pro-
posed by Wright in 1937. Wright’s [Wri70] remarks are still
valid today:

The appearance of this formula is deceptively
simple. Its use in conjunction with other
components is not such a gross oversimplifi-
cation in principle as has sometimes been al-
leged . . . Obviously calculations can be made
only from rather simple models, involving only a
few loci or simple patterns of interaction among
many similarly behaving loci. . . Apart from ap-
plication to simple systems, the greatest signif-
icance of the general formula is that its form
brings out properties of systems that would not
be apparent otherwise.

The restricted application lies in the following fact. In
general the difference equations need the evaluation of ��

terms. The computational complexity can be drastically
reduced if the fitness function has a special form.

Example 3.1. ��
� �
�

� &�
�� 
� � ��� ��
After some tedious manipulations one obtains:

# ��� �
�
�

&������

%#

%�����
� &� �

�
� ���

&������

This gives the difference equation

������ � ����� ����� ����� ���
&��

� &������ ��
(3.7)

Noting that � 
�
������

� &� we have proving nothing else than
Wright’s equation. This equation has been approximately
solved in [MM99a].

This example shows that the expressions for # and its
derivatives can be surprisingly simple. # ��� can be ob-
tained from ���� by exchanging
 � with �����. But the formal
derivation of # ��� cannot be obtained from the simplified
# ��� expression.

We will investigate the computation of # and its gradient
in the following section.

3.2 Computing the Average Fitness

Wright is also the originator of the landscape metaphor now
popular in evolutionary computation and population genetics.
Unfortunately Wright used two quite different definitions for
the landscape, apparently without realizing the fundamental
distinction between them. The first landscape describes the
relation between the genotypes and their fitness, while the
second describes the relation between the allele frequencies
in a population and its mean fitness.

The first definition is just the fitness function ���� used in
evolutionary computation, the second one is the average fit-
ness �# ���. The second definition is much more useful, be-
cause it lends to a quantitative description of the evolutionary
process, i.e. Wright’s equation.

For notational simplicity we only derive the relation be-
tween ���� and �# for binary alleles. Let $ � �$�� � � � � $��
with $� � ��� �� be a multi-index. We define with �� �� �:

�� ��
�
�


���

Lemma 3.1. �# ��� �� ���� is an extension of ��
� to �.
There exist two representations for �# ���. These are given by

�# ��� ����� � � � � ����� ��� � � � ��� ��� � � � �

� ���� � � � � ���� � � � ��

�# ��� �
�
�

&��
�



The above lemma can rigorously be proven by Moebius
inversion. If the the order of the function is bounded by a
constant independent of 	, �# ��� can be computed in poly-
nomial time. The equation can also be used to compute the
derivative of �# , which is needed for Wright’s equation. It is
given by

% �# ���

%�����
�

�
������

&��
��

(3.8)

with $	� � �� $
	
� � $� .

We will now characterize the attractors of UMDA. Let �� �
�'��

�
�
����� '��
�� � �� � � '��
�� � �� and� �

�
� ��

the Cartesian product. Then � � ��� ��� is the unit cube.

Theorem 3.2. The stable attractors of Wright’s equation are
at the corners of �, i.e �� � ��� �� � � �� � � � � 	. In the
interior there are only saddle points or local minima where
()&! # ���� � �. The attractors are local maxima of ��
�
according to one bit changes. Wright’s equation solves the
continuous optimization problem �	
���� �# ���� in � by
gradient ascent.

Proof: # is linear in ��, therefore it cannot have any lo-
cal maxima in the interior. Points with ()&! # ��� � � are
unstable fixpoints of UMDA.

We next show that boundary points which are not local
maxima of ��
� cannot be attractors. We prove the conjecture
indirectly. Without loss of generality, let the boundary point
be �� � ��� � � � � ��. We now consider an arbitrary neighbor,
i.e � � ��� �� � � � � ��. The two points are connected at the
boundary by

���� � ��� �� �� � � � � �� � � ��� ��

We know that �# is linear in the parameters ��. Because
�# ��� � ���� �� � � � � �� and �# ���� � ���� � � � � �� we have

�# ������ � ���� � � � � �� � � �


���� �� � � � � ��� ���� � � � � ����

(3.9)
If ���� �� � � � � �� � ���� � � � � �� then �� cannot be an attractor
of UMDA. The mean fitness increases with �.

The extension of the above lemma to multiple alleles and
multivariate distributions is straightforward, but the notation
becomes difficult.

4 The Science of Breeding

Fitness proportionate selection is the undisputed selection
method in population genetics. It is considered to be a model
for natural selection. But for proportionate selection the fol-
lowing problem arises. When the population approaches an
optimum, selection gets weaker and weaker because the fit-
ness values become similar. Therefore breeders of livestock
use other selection methods. These are called artificial selec-
tion. For large populations they mainly apply truncation se-
lection. It works as follows. A truncation threshold * is fixed.

Then the *� best individuals are selected as parents for the
next generation. These parents are then randomly mated.

The science of breeding is the domain of quantitative ge-
netics. The theory is based on macroscopic variables. Be-
cause an exact mathematical analysis is impossible, many
statistical techniques are used. In fact, the concepts of regres-
sion, correlation, heritability and decomposition of variance
have been developed and applied in quantitative genetics for
the first time.

4.1 Single Trait Theory

For a single trait the theory can be easily summarized. Start-
ing with the fitness distribution, the selection differential ����
is introduced. It is the difference between the average of the
selected parents and the average of the population.

���� �# ������ ����# ������ (4.1)

Similarly the response ���� is defined

���� �# ����� ����# ������ (4.2)

Next a linear regression is done

���� � +������� (4.3)

+��� is called realized heritability. The most difficult part of
applying the theory is to predict +���. The first estimate uses
the regression of offspring to parent. Let ��� �� be the pheno-
typic values of parents � and ,, then

���� �
�� � ��
�

is called the mid-parent value. Let the stochastic variable �
denote the mid-parent value.

Theorem 4.1. Let - ��� � ���� � � � � �� � be the population at
generation �, where �� denotes the phenotypic value of indi-
vidual �. Assume that an offspring generation .��� is created
by random mating, without selection. If the regression equa-
tion

/����� � &��� � + ������ �
�� � ��
�

� ��� (4.4)

with
0����� � �

is valid, where /�� is the fitness value of the offspring of � and
,, then

+ ������ � +��� (4.5)

Proof: From the regression equation we obtain for the ex-
pected averages

0�.���� � &��� � + ����������

Because the offspring generation is created by random mat-
ing without selection, the expected average fitness remains
constant



0�.���� �����

Let us now select a subset as parents. The parents will be
randomly mated, producing the offspring generation. If the
subset is large enough, we may still use the regression equa-
tion and obtain for the averages

���� �� � &��� � + ������ ������

Here ���� �� is the average fitness of the offspring genera-
tion produced by the selected parents. Subtracting the above
equations we obtain

���� ������� � + ������ � ������������

This proves + ������ � +���.

The importance of regression for estimating the heritability
was discovered by Galton and Pearson at the end of the 19th
century. They computed the regression coefficient rather in-
tuitively by scatter diagrams of mid-parent and offspring. The
problem of computing a good regression coefficient is math-
ematically solved by the theorem of Gauss-Markov. We just
cite the theorem. The proof can be found in any textbook on
statistics [Rao73].

Theorem 4.2. A good estimate for the regression coefficient
of mid-parent and offspring is given by

+ ������ �
�/1�.���� - ����

1&)� - ����
(4.6)

The covariance of . and - is defined by

�/1�.���� - ���� �
�

�

�
���

�/����&1�.������� �����&1� - �����

&1 denotes the average and 1&) the variance. Closely re-
lated to the regression coefficient is the correlation coefficient
�/)� � �.�. It is given by

�/)� - ���� .���� � + ������ � �
1&)� - ����

1&)�.����
����

The concept of covariance is restricted to parents produc-
ing offspring. It cannot be used for UMDA. Here the analysis
of variance helps. We will decompose the fitness value ����
recursively into an additive part and interaction parts. We re-
call the definition of conditional probability.

Definition 4.1. Let ���� denote the probability of �. Then
the conditional probability ������ of � given � is defined by

������ �
���� ��

����
(4.7)

The proof of the next theorem can be found in [AM94a].

Theorem 4.3. Let the population be in linkage equilibrium
i.e.

���� �

��
���

���
�� (4.8)

Then the variance of the population is given by

� � �� � �� � � � �� ���� � �� (4.9)

The covariance of mid-parent and offspring can be computed
from

�/1� - �.� �
�

�
���

�

�
��� � � ��

�

��
�� �

��
���

�

��
�� (4.10)

We now compare the estimates for heritability. For propor-
tionate selection we have from Theorem 3.1

�������� �
�����

� ���
���� � "))/)�����

For Two-Parent-Recombination (TPR) Mühlenbein (1997)
has shown for 	 � � loci

������� � �
�/1� - ���� .����

� ���
���� �

�

�
"))/)����

If the population is in linkage equilibrium we have
"))/)� � "))/)� Using the covariance decomposition we
can write

������� �
� ����

� ���
���� �

�

�

�����

� ���
���� �

�

�
"))/)���

Thus the first term of the expansion is identical to the
���� term. This shows again the similarity between two
parent recombination and the���� method. Breeders usu-
ally use the expression +��� � � ���� � ��� as an estimate. It
is called heritability in the narrow sense [Fal81]. But note
that the variance decomposition seems to be only true for
Robbins’ proportions.

The selection differential is not suited for mathematical
analysis. For truncation selection it can be approximated by

���� � 2��
�
� ��� (4.11)

where 2� is called the selection intensity. Combining the two
equations we obtain the famous equation for the response to
selection.

���� � +���2��
�
� ��� (4.12)

These equations are in depth discussed in [Müh97]. The
theory of breeding uses macroscopic variables, the average
and the variance of the population. But we have derived
only one equation, the response to selection equation. We
need a second equation connecting the average fitness and
the variance in order to be able to compute the time evolu-
tion of the average fitness and the variance. There have been



many attempts in population genetics to find a second equa-
tion. But all equations assume that the variance of the pop-
ulation continuously decreases. This is not the case for arbi-
trary fitness functions. Recently Prügel-Bennet and Shapiro
[PBS97] have independently proposed to use moments for de-
scribing genetic algorithms. They apply methods of statistical
physics to derive equations for higher moments for special fit-
ness functions.

Results for tournament selection and analytical solutions
for linear functions can be found in [MM00].

We next present numerical results for some popular fitness
functions.

4.2 Numerical Results for UMDA

This section solves the problem put forward by Mitchell et al.
[MHF94]: to understand the class of problems for which ge-
netic algorithms are most suited, and in particular, for which
they will outperform other search algorithm. The famous
Royal-Road function is analyzed in [MM00].
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Figure 2: Definition of Saw(36,4,0.85)

Equation 3.4 shows that UMDA performs a gradient as-
cent in the landscape given by # . This helps our search for
functions best suited for UMDA. We take the �&3 landscape
as a spectacular example. The definition of the function can
be extrapolated from Figure 2. In Saw�	�4� 5�, 	 denotes
the number of bits and �4 the distance from one peak to the
next. The highest peak is multiplied by 5 (with 5 � �), the
second highest by 5�, then 5	 and so on. The landscape is
very rugged. In order to get from one local optimum to an-
other one, one has to cross a deep valley.

But again the transformed landscape # ��� is fairly
smooth. An example is shown in Figure 3. Whereas ����
has 5 isolated peaks, # ��� has three plateaus, a local peak
and the global peak. We will use ���� with truncation
selection. We have not been able to derive precise analytical
expressions. In Figure 3 the results are displayed.
In the simulation two truncation thresholds, * � ���� and
* � ����, have been used. For * � ���� the probability �
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Figure 3: Results with normal and strong selection.

stops at the local maximum for �# ���. It is approximately
� � ����. For * � ���� ���� is able to converge to the
optimum � � �. It does so by even going downhill!

This example confirms in a nutshell our theory. ����
transforms the original fitness landscape defined by ���� into
a fitness landscape defined by �# ���. This transformation
smoothes the rugged fitness landscape ����. ���� might
find the global optimum, if there is a tendency towards the
global optimum.

This example shows that UMDA can solve difficult multi-
modal optimization problems. It is obvious that any search
method using a single search point like the ��� ��-algorithm
needs an almost exponential number of function evaluations.
We next show how the science of breeding can be used for
controlling ����.

4.3 Numerical Investigations of the Science of Breeding

The application of the science of breeding needs the compu-
tation of the average fitness ����, the variance � ��� and the
additive genetic variance � ����. The first two terms are stan-
dard statistical terms. The computation of � � needs ���
��
and ���
��. The computation of the first term only poses some
difficulties. It can be approximated by

���� � �� �� �
�

������

����

���� � ��
���� �

�

�

��
���

��6�� �

���
��

(4.13)
6�� are those � values in the population which contain 
 � � �.

Linear functions are the ideal case for the theory. The her-
itability +��� is 1 and the additive genetic variance is identical
to the variance. We skip this trivial case and start with a mul-
tiplicative fitness function ���� �

�
��� � ������ . For a

multiplicative function we also have ���� � ����.
Figure 4 confirms the theoretical results from Section 2

(VA and Var are multiplied by 10 in this figure). Additive
genetic variance is almost identical to the variance and the
heritability is 1. The function is highly nonlinear of order 	,
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but nevertheless it is easy to optimize. The function has also
been investigated by Rattray and Shapiro [RS99]. But their
calculations are very difficult.

We have shown that ���� can optimize difficult multi-
modal functions, thus explaining the success of genetic al-
gorithms in optimization. We have also shown that ����
can easily be deceived by simple functions called deceptive
functions. These functions need more complex search distri-
butions. This problem is investigated next.

5 Graphical Models and Optimization

The simple product distribution of ���� cannot capture
dependencies between variables. If these dependencies are
necessary to find the global optimum, ���� and simple
genetic algorithms fail. We take an extreme case as exam-
ple, the needle in a haystack problem. The fitness function is
everywhere one, except for a single � where it is 10. All 
 �

values have to be set in the right order to obtain the optimum.
Of course, there exist no clever search method for this prob-
lem. But there is a continuum of increasing complexity from
the simple .	"�&
 function to the needle in a haystack. For
complex problems we need a complex search distribution. A
good candidate for a search distribution for optimization is
the Boltzmann distribution.

Definition 5.1. For 7 
 � define the weighted Boltzmann
distribution of a function ���� as

��� ��� ��
�����"

�����

 �����"

����
��

�����"
����

8 �7� ���
(5.1)

where 8 �7� ��� is the partition function. To simplify the no-
tation 7 and/or � can be omitted. ����� is the distribution for
7 � �.

The Boltzmann distribution concentrates the search
around good fitness values. Thus it is theoretically a very

good candidate for a search distribution used for optimiza-
tion. The problem lies in the efficient computation of the
Boltzmann distribution. The theory presented in this section
unifies simulated annealing and population based algorithms
with the general theory of estimating distributions.

x

5.1 Boltzmann selection

Closely related to the Boltzmann distribution is Boltzmann
selection. An early study about this selection method can be
found in [dlMT93].

Definition 5.2. Given a distribution � and a selection param-
eter 9, Boltzmann selection calculates the distribution of the
selected points according to

����� �
����" ����

 ����"

 ���
(5.2)

This allows us to define the :0�� (Boltzmann Estimated
Distribution Algorithm).

BEDA – Boltzmann Estimated Distribution Algorithm

� STEP 0: �  �. Generate � points according to the
���� �� � �����.

� STEP 1: With a given�7��� � �, let

����� �� �
���� ��"���������

 ���� ��"

��������
�

� STEP 2: Generate � new points according to the dis-
tribution ��
� �� �� � ���
� ��.

� STEP 3: � �� �.

� STEP 4: If stopping criterion not met go to STEP 1

:0�� is a conceptional algorithm, because the calcula-
tion of the distribution requires to compute the sum of expo-
nentially many terms. The following convergence theorem is
easily proven.

Theorem 5.1 (Convergence). Let �7��� be an annealing
schedule, i.e. for every � increase the inverse temperature 7
by�7���. Then for :0�� the distribution at time � is given
by

���� �� �
�����"

�������

8 �7���� ���
(5.3)

with the inverse temperature

7��� �

��
���

�7�*�� (5.4)

Let � be the set of global optima. If 7�����, then

���
���

��
� �� �

�
� ��� 
 ��

� else
(5.5)



Proof: Let 
	 � � be a point with optimal fitness and

  �� a point with ���� � ��
	�. Then

��
� �� �
�����"

��������

 �����"

�����
�
�

"�������

��� � ; � "��������

�
�

��� � ; � "�������������

As 7��� � �, ��
� �� converges (exponentially fast) to 0.
Because ��
� �� � ���� �� for all 
	� �	 � �, the limit
distribution is the uniform distribution on the set of optima.

We next transform:0�� into a practical algorithm. This
means the reduction of the parameters of the distribution and
the computation of an adaptive schedule.

5.2 Factorization of the distribution

In this section we describe a method for computing a factor-
ization of the probability, given an additive decomposition of
the function:

Definition 5.3. Let ��� � � � � �	 be index sets, �� �
��� � � � � 	�. Let ��� be functions depending only on the vari-
ables 
� with , � ��. These variables we denote as 
�� Then

���� �

	�
���

������ � ���
�� � (5.6)

is an additive decomposition of the fitness function � .

Definition 5.4. Given ��� � � � � �	, we define for � � �� � � � �4
the sets !�, +� and ��:

!� ��

��
���

�� � +� �� �� � !���� �� �� �� � !��� (5.7)

We set !� � �.
In the theory of decomposable graphs, ! � are called his-

tories, +� residuals and �� separators [Lau96]. We recall the
following definition.
Definition 5.5. The conditional probability ������ is defined
as

������ �
������

����
(5.8)

In [MMO99], we have shown the following theorem.

Theorem 5.2 (Factorization Theorem). Let ���� be a Boltz-
mann distribution with

���� �
"����

8 �7�
(5.9)

and �����
�	

��� ������ be an additive decomposition. If

+� �� � �� � �� � � � � �� !! � �� (5.10)

�� 
 � �, � � such that �� � �� (5.11)

then

���� �
�	

���
��
"� �
#�� (5.12)

The constraint defined by Equation (5.11) is called the
running intersection property [Lau96].

FDA – Factorized Distribution Algorithm

� STEP 0: Calculate +� and �� from the decomposition
of the function.

� STEP 1: Generate an initial population with � indi-
viduals.

� STEP 2: Select � individuals using Boltzmann selec-
tion.

� STEP 3: Estimate the conditional probabilities
��
"� �
#� � �� from the selected points.

� STEP 4: Generate new points according to ���� � �
�� �

�	
��� ��
"� �
#� � ��.

� STEP 5: If not stopping criterion reached: �  � � �
Go To STEP2

With the help of the factorization theorem, we can turn
the conceptional algorithm :0�� into ���, the Factor-
ized Distribution Algorithm. As the factorized distribution is
identical to the Boltzmann distribution if the conditions of the
factorization theorem are fulfilled, the convergence proof of
:0�� also applies to ���.

Not every additive decomposition leads to a factorization
using the factorization theorem. In these cases, more sophis-
ticated methods have to be used. But ��� can also be used
with an approximate factorization.

We discuss a simple example.

Example 5.1. Functions with a chain-like interaction can
also be factorized:

;<&�	��� �

��
���

���
���� 
�� (5.13)

Here the factorization is

���� � ��
��

��
���

��
��
���� (5.14)

��� can be used with any selection scheme, but then the
convergence proof is no longer valid. We think that Boltz-
mann selection is an essential part in using the ���. In or-
der to obtain a practical algorithm, we still have to solve two
problems: To find a good annealing schedule for Boltzmann
selection and to determine a reasonable sample size (popula-
tion size). These two problems will be investigated next.



5.3 A new annealing schedule for the Boltzmann distribu-
tion

Boltzmann selection needs an annealing schedule. But if we
anneal too fast, the approximation of the Boltzmann due to
the sampling error can be very bad. For an extreme case, if
the annealing parameter is very large, the second generation
should consist only of the global maxima.

5.3.1 Taylor expansion of the average fitness

In order to determine an adaptive annealing schedule, we will
make a Taylor expansion of the average fitness of the Boltz-
mann distribution.

Definition 5.6. The average fitness of a fitness function and
a distribution is

# ��� �
�
�

�������� (5.15)

For the Boltzmann distribution, we use the abbreviation
# �7� ��# ���� �.

Theorem 5.3. The average fitness of the Boltzmann distribu-
tion # �7� has the following expansion in 7:

# � �7� �# �7� �
�
���

� �7 � 7��

� �
�#

����7� (5.16)

where � #
� are the centred moments

�#
� �7� ��

�
�



�����# �7�

��
���� (5.17)

They can be calculated using the derivatives of the partition
function:

�#
����7� �


8 	 �7�

8 �7�

����

for � 
 �� � #
��� (5.18)

Proof: The 5-th derivative of the partition function obeys for
5 
 �:

8
���
 �7� �

�
�

�����"���� (5.19)

Thus the moments for 5 
 � can be calculated as

���7� ��
�
�

��������� �
8
���
 �7�

8 �7�
(5.20)

and thus

# �7� ����7� � 8 	 �7� 8 �7�� (5.21)

Direct evaluation of the derivatives of # leads to complicate
expressions. The proof is rather technical by induction. We
omit it here.

We can now derive an adaptive annealing schedule. The
variance (and the higher moments) can be estimated from the
generated points. As long as the approximation is valid, one
can choose a desired increase in the average fitness and set
7��� �� accordingly. So we can set

�7��� �� 7�� � ��� 7��� �
# new

 ����# �7����

=� �7����
(5.22)

As truncation selection has proven to be a robust and ef-
ficient selection scheme, we can try to approximate the be-
haviour of this method.

Definition 5.7. The standard deviation schedule (SDS) is de-
fined by

�7��� �
�

= �7����
(5.23)

Note that this annealing schedule cannot be used for sim-
ulated annealing, as the estimation of the variance of the dis-
tribution requires samples that are independently drawn. But
the sequence of samples generated by simulated annealing are
not independent.
We next turn to the fixation problem in finite populations.

5.4 Finite Populations

In finite populations convergence of ���� or ��� can
only be probabilistic. Since ���� a simple ��� algo-
rithm, it is sufficient to discuss ���. This section is ex-
tracted from [MM99b].
Definition 5.8. Let � be given. Let -#��$��� denote the prob-
ability that��� with a population size of � converges to the
optima. Then the critical population size is defined as

���� � ���
�

-#��$��� 
 �� � (5.24)

If ��� with a finite population does not convergence to
an optimum, then at least one gene is fixed to a wrong value.
The probability of fixation is reduced if the population size is
increased. We obviously have for FDA

-#��$���� � -#��$���� �� � ��

The critical question is: How many sample points are
necessary to reasonably approximate the distribution used
by FDA. A general estimate from Vapnik [Vap98] can be a
guideline. One should use a sample size which is about 20
times larger than the number of free parameters.

We discuss the problem with a special function called Int.
Int��� gives the integer value of the binary representation.

Int�	� �
��
���

����
� (5.25)

The fitness distribution of this function is not normal
distributed. The function has �� different fitness values.
We show the cumulative fixation probability in Table 1 for



* � ���� * � ��� :/���� ���
t � � �� � � �� � � ��� � � ���
1 0.0 0.0 0.0885 0.0
2 0.0025 0.0095 0.1110 0.0
3 0.0165 0.0205 0.1275 0.0
4 0.0355 0.0325 0.1375 0.002
5 0.0575 0.0490 0.1455 0.002
6 0.0695 0.0630 0.1510 0.008
7 0.0740 0.0715 0.1555 0.018
8 0.0740 0.0780 0.1565 0.030
9 0.0740 0.0806 0.1575 0.036

14 0.084

Table 1: Cumulative fixation probability for Int����. Trunca-
tion selection vs. Boltzmann selection with �7 � ���� and
Boltzmann SDS; � denotes size of population.

Int����. The fixation probability is larger for stronger selec-
tion. For a given truncation selection the maximum fixation
probability is at generation 1 for very small � . For larger val-
ues of � the fixation probability increases until a maximum
is reached and then decreases again. This behaviour has been
observed for many fitness distributions.

For truncation selection with * � ���� we have for
� � �� a fixation probability of about �����. A larger *
reduces the fixation probability. But this advantage is set off
by the larger number of generations needed to converge. The
problem of an optimal population size for truncation selec-
tion is investigated in [MM99b]. Boltzmann selection with
�7 � ���� is still very strong for the fitness distribution
given by Int����. For � � ��� the largest fixation prob-
ability is still at the first generation. Therefore the critical
population size for Boltzmann selection for �7 � ���� is
very high (�  � ����. In comparison, the adaptive Boltz-
mann schedule SDS has a total fixation probability of �����
for a population size of � � ���. This is almost as small as
truncation selection.
This example shows that Boltzmann selection in finite popu-
lations critically depends on a good annealing schedule. Nor-
mally we run ��� with truncation selection. This selection
method is a good compromise. But Boltzmann selection with
SDS schedule is of comparable performance.

Estimates for the necessary size of the population can also
be found in [HCPGM99]. But they use a weaker performance
definition. The goal is to have a certain percentage of the bits
of the optimum in the final population. Furthermore their re-
sult is only valid for fitness function which are approximately
normally distributed.

The danger of fixation can further be reduced by a tech-
nique very popular in Bayesian statistics. This is discussed in
the next section.

5.5 Bayesian Networks, Population Size and Bayesian
Prior

In order to derive the results of this section we will use a
normalized representation of the distribution.
Theorem 5.4 (Bayesian Factorization). Each probability
can be factored into

���� � ��
��

��
���

��
���&�� (5.26)

Proof: By definition of conditional probabilities we have

���� � ��
��

��
���

��
��
�� � � � � 
���� (5.27)

Let �&� 	 �
�� � � � � 
����. If 
� and �
�� � � � � 
���� � �&�
are conditionally independent given �& �, we can simplify
��
��
�� � � � � 
���� � ��
���&��.

-�� are called the parents of variable �. This factoriza-
tion can be represented by a directed graph. In the context of
graphical models the graph and the conditional probabilities
are called a Bayesian network [Jor99, Fre98]. It is obvious
that the factorization used in Theorem 5.2 can be easily trans-
formed into a Bayesian factorization.

Usually the empirical probabilities are computed by the
maximum likelihood estimator. For � samples with 4 � �
instances of 
 the estimate is defined by

���
� �
4

�

For 4 � � we obtain ��
� � � and for 4 � � we obtain
��
� � �. This leads to our gene fixation problem, because
both values are attractors. The fixation problem is reduced
if ���
� is restricted to an interval � � �	�� � ���
� � � �
�	�� � �� This is exactly what results from the Bayesian
estimation. The estimate ���
� is the expected value of the
posterior distribution after applying Bayes formula to a prior
distribution and the given data. For binary variables 
 the
estimate

���
� �
4� )

� � �)
(5.28)

is used with ) � �. r is derived from a Bayesian prior. ) � �
is the result of the uniform Bayesian prior. The larger ), the
more the estimates tend towards � �. The reader interested
in a derivation of this estimate in the context of Bayesian net-
works is referred to [Jor99].

How can we determine an appropriate value for ) for our
��� application? The uniform prior gives for 4 � � the
value ��	�� � � �� � ��. If � is small, then �	�� might be
so large that we generate the optima with a very small prob-
ability only. This means we perform more a random search
instead of converging to the optima. This consideration leads
to a constraint. � � �	�� should be so large that the optima
are still generated with high probability. We now heuristically



derive �	�� under the assumption that the optimum is unique.
To simplify the formulas we require that��� ���
���� 
 "��.

This means that the optimum string 
��� should be gener-
ated more than �� at equilibrium. This is large enough to
observe equilibrium and convergence. Let us first investigate
the ���� factorization ��
� �

�
��
��. For ) � � the

largest probability is �	�� � �� � �� �� � ��. Obviously

�	�� � ��
�

� � �
� �� �	��

The largest probability to generate the optimum is given by

���
���� �

��
���

���
�

� � �
� � "�

�
���

If � � .�	���� with $ � �, then ��
���� becomes arbitrar-
ily small for large 	. For � � 	 we obtain ���
���� � "��.
This gives the following guideline, which actually is a lower
bound of the population size.

Rule of Thumb: For ���� the size of the population
should be at least equal to the size of the problem, if a
Bayesian prior of ) � � is used.

Bayesian priors are also defined for conditional distribu-
tions. The above heuristic derivation can also be used for
general Bayesian factorizations. The Bayesian estimator is
for binary variables

���
���&�� �
4� )

- � �)

- is the number of occurrences of �&�. We make the as-
sumption that in the best case the optimum constitutes 25% of
the population. This gives - 
 � �. For ) � � we compute
as before
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���� �

��
���
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���� ��&����� �
��
���

���
�

� � � �
�
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�
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If we set � � �	 we obtain ���
���� � "��. Thus we obtain
a lower bound for the population size:

Rule of Thumb: For ��� using a factorization with many
conditional distributions and Bayesian prior of ) � �, the
size of the population should be about four times the size of
the problem.

These rule of thumbs have been heuristically derived.
They have to be confirmed by numerical studies. Our ���
estimate is a crude lower bound. There exist more general es-
timates. We just cite Vapnik [Vap98]. In order to approximate
a distribution with a reasonable accuracy, he proposes to use
a sample size which is about 20 times larger than the number
of free parameters of the distribution. For ���� this gives
��	, i.e. 20 times our estimate.

We demonstrate the importance of using a Bayesian prior
by an example. It is a deceptive function of order � and

problem size of 	 � ��. Our convergence theorem gives
convergence of ��� with Boltzmann selection and an ex-
act factorization. The exact factorization consists of marginal
distributions of size 4. We compare in Figure 5 ��� with
SDS Boltzmann selection and truncation selection without
Bayesian prior. We also show a run with SDS Boltzman se-
lection and Bayesian prior.

The simulation was started at � � ����, i.e. near the local
optimum � � �. Nevertheless, ��� converges to the global
optimum at � � �. It is interesting to note that ��� at
first moves into the direction of the local optimum. At the
very last moment the direction of the curve is dramatically
changed. SDS Boltzmann selection behaves almost identical
to truncation selection with threshold * � ����. But both
methods need a huge population size in order to converge to
the optimum. In this example it is � � �����. If a prior of
) � � is used the population size can be reduced to � � ���.
With this prior the curve changes direction earlier. Because
of the prior the univariate marginal probabilities never reach
� � � or � � �. In this example � stops at about � � �����.
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Figure 5: Average fitness # ��� for ��� for Decep(32,4);
population size � � ����� without prior and � � ��� with
prior ) � �.

Let us now summarize the results: Because ��� uses
finite samples of points to estimate the conditional probabil-
ities, convergence to the optimum will depend on the size of
the samples (the population size). ��� has experimentally
proven to be very successful on a number of functions where
standard genetic algorithms fail to find the global optimum.
In [MM99b], the scaling behaviour for various test functions
has been studied. The estimation of the probabilities and the
generation of new points can be done in polynomial time. If
a Bayesian prior is used the influence of the population size
is reduced. There is a tradeoff. If no prior is used then con-
vergence is fast. But a large population size might be needed.
If a prior is used, the population size can be much smaller.
But the number of generations until convergence increases.
We have not yet enough numerical results, therefore we just
conjecture:



��� with a finite population of size � � �	, SDS Boltz-
mann selection, Bayesian prior, and a Bayesian factorization
where the number of parents is restricted by 5 independent of
	, will converge to the optimum in polynomial time with high
probability.

5.6 Constraint Optimization Problems

An advantage of ��� compared to genetic algorithm is
that it can handle optimization problems with constraints.
Mendelian recombination or crossover in genetic algorithms
often creates points which violate the constraints. If the struc-
ture of the constraints and the structure of the ADF are com-
patible, then ��� will generate only legal points.

Definition 5.9. A constraint optimization problem is defined
by

4&
���� �

	�
���

������� (5.29)

����;���%�� (5.30)

;���%�� stands for the �th constraint function. ��� ��%� �
 are sets of variables. The constraints are locally defined.
Thus they can be used to test which marginal probabilities are
0. This is technically somewhat complicated, but straightfor-
ward. For instance, if we have ;��
�� 
�� � 
� � 
� � �,
then obviously ��� � �� � � �� � �. Thus the constraints
are mapped to marginal distributions: if ; ���%�� is violated
then we set ���
%�� � �.

We can now factorize ���� as before. But we can also fac-
torize the graph defined by ;��
%��. Our theory can handle
the two cases: the factorization of the constraints is contained
in the factorization of the function, i.e. 
%� � 
�� , or the fac-
torization of the function is contained in the factorization of
the constraints, i.e. 
�� � 
%�

Let !# be the set of feasible solutions. Then the Boltz-
mann distribution on !# is defined as

�"��#��� �
���
�"

�����
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(5.31)

Then the following convergence theorem holds.

Theorem 5.5 (Convergence). Let 1) the initial population
be feasible. Let 2) the factorization of thetechniques. con-
straints and the factorization of the function be contained in
the ��� factorization. Let 3) �7��� be an annealing sched-
ule. Then for ��� the distribution at time � is given by

���� �� �
�����"

��������
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(5.32)

with the inverse temperature

7��� �

��
���

�7�*�� (5.33)

Let � be the set of global optima. If 7�����, then

���
���

��
� �� �

�
� ��� 
 ��
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(5.34)

The proof is almost identical to the proof of Theorem 5.1. The
factorization theorem needs an analytical description of the
function. But it is also possible to determine the factorization
from the data sampled. This is described next.

6 Computing a Bayesian Network from Data

The ��� factorization is based on the decomposition of the
fitness function. This has two drawbacks: first, the structure
of the function has to be known. Second, for a given instance
of the fitness function, the structure might not give the small-
est factorization possible. In other words: complex struc-
tures are not necessarily connected to corresponding complex
dependency structures for a given fitness function. The ac-
tual dependencies depend on the actual function values. This
problem can be circumvented by computing the dependency
structure from the data.

Computing the structure of a Bayesian network from data
is called learning. Learning gives an answer to the question:
Given a population of selected points ����, what is a good
Bayesian factorization fitting the data? The most difficult
part of the problem is to define a quality measure also called
scoring measure.

A Bayesian network with more arcs fits the data better than
one with less arcs. Therefore a scoring metric should give
the best score to the minimal Bayesian network which fits
the data. It is outside the scope of this paper to discuss this
problem in more detail. The interested reader is referred to
the two papers by Heckerman and Friedman et al. in [Jor99].

For Bayesian networks two quality measures are most fre-
quently used - the Bayes Dirichlet (BDe) score and the Min-
imal Description Length (MDL) score. We concentrate on
the MDL principle. This principle is motivated by universal
coding. Suppose we are given a set D of instances, which
we would like to store. Naturally, we would like to conserve
space and save a compressed version of D. One way of com-
pressing the data is to find a suitable model for D that the en-
coder can use to produce a compact version of D. In order to
recover D we must also store the model used by the encoder
to compress D. Thus the total description length is defined as
the sum of the length of the compressed version of D and the
length of the description of the model. The MDL principle
postulates that the optimal model is the one that minimizes
the total description length.

6.1 LFDA - Learning a Bayesian Factorization

In the context of learning Bayesian networks, the model is
a network B describing a probability distribution � over the
instances appearing in the data. Several authors have approx-
imately computed the MDL score. Let � � ��� denote the



size of the data set. Then MDL is approximately given by

MDL�:��� � � �"�- �:���� ���:���� �
�-� � �"���

(6.1)
with �"�
� �� �#
��
�. - �:� denotes the prior probability
of network :, -� �

�
� �
����� gives the total number of

probabilities to compute. ��:��� is defined by
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where 4�
�� �&�� denotes the number of occurrences of 
 �

given configuration �&�. 4��&�� �
�

��
4�
�� �&��. If �&� �

�, then 4�
�� �� is set to the number of occurrences of 
 � in
D.

The formula has an interpretation which can be easily
understood. If no prior information is available, - �:� is
identical for all possible networks. For minimizing, this
term can be left out. ���-� � �"��� is the length required
to code the parameter of the model with precision 1/M.
Normally one would need -� � �"��� bits to encode the
parameters. However, the central limit theorem says that
these frequencies are roughly normally distributed with a
variance of �����. Hence, the higher ��� �"��� bits are
not very useful and can be left out. �� ���:��� has two
interpretations. First, it is identical to the logarithm of the
maximum likelihood (�"���:����). Thus we arrive at the
following principle:

Choose the model which maximizes �"���:����� �
�-� �

�"���.

The second interpretation arises from the observation that
H(B,D) is the conditional entropy of the network structure
:, defined by -��, and the data �. The above principle
is appealing, because it has no parameter to be tuned. But
the formula has been derived under many simplifications. In
practice, one needs more control about the quality vs. com-
plexity tradeoff. Therefore we use a weight factor $. Our
measure is defined by :2;.

:2;�:��� $� � �� ���:���� $-� � �"��� (6.3)

This measure with $ � ��� has been first derived by Schwarz
[Sch78] as Bayesian Information Criterion. Therefore we ab-
breviate our measure as :2;�$�.

To compute a network : which maximizes :2;
requires a search through the space of all Bayesian networks.
Such a search is more expensive than to search for the optima
of the function. Therefore the following greedy algorithm
has been used. 5	�� is the maximum number of incoming
edges allowed.

���$������

� STEP 0: Start with an arc-less network.

� STEP 1: Add the arc �
�� 
�� which gives the maxi-
mum increase of BIC($) if �-�� � � 5	�� and adding
the arc does not introduce a cycle.

� STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can be eas-
ily done by maintaining for each node a list of parents and
ancestors, i.e. parents of parents etc. Then �
 � � 
�� intro-
duces a cycle if 
� is ancestor of 
�.

The BOA algorithm of Pelikan [PGCP00] uses the BDe
score. This measure has the following drawback. It is more
sensitive to coincidental correlations implied by the data than
the MDL measure. As a consequence, the BDe measure will
prefer network structures with more arcs over simpler net-
works [Bou94].

Given the BIC score we have several options to extend
��� to ���� which learns a factorization. Due to lim-
itations of space we can only show results of an algorithm
which computes a Bayesian network at each generation using
algorithm :������ 5	���. ��� and ���� should behave
fairly similar, if ���� computes factorizations which are
in probability terms very similar to the ��� factorization.
FDA uses the same factorization for all generations, whereas
���� computes a new factorization at each step which de-
pends on the given data M.

We have applied ���� to many problems [MM99b].
The results are encouraging. The numerical result indicates
that control of the weight factor $ can substantially reduce
the amount of computation. For Bayesian network we have
not yet experimented with control strategies. We have inten-
sively studied the problem in the context of neural networks
[ZOM97].

7 The System Dynamics Approach to Optimiza-
tion

We have shown that Wright’s equations converge to some lo-
cal optima of the fitness function at the boundary. We might
ask ourselves: Why not using the difference equations di-
rectly, without generating a population? This approach is cal-
lled the systems dynamics approach to optimization. We just
discuss a few examples which are connected with our theory.

7.1 The Replicator Equation

In this section we investigate the relation between Wright’s
equation and a popular equation called replicator equation.
Replicator dynamics is a standard model in evolutionary bi-
ology to describe the dynamics of growth and decay of a num-
ber of species under selection. Let � � ��� �� � � � � �� be a set
of species, �� the frequency of species � in a fixed popula-
tion of size � . Then the replicator equation is defined on a
simplex �� � �� �

�
�� � �� � � �� � ��
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(7.1)

�� gives the fitness of species � in relation to the others.
The replicator equation is discussed in detail in [HS98]. For
the replicator equation a maximum principle can be shown.
Theorem 7.1. If there exists a potential � with %� %�� �
�����, then !� !� 
 �, i.e the potential � increases using
the replicator dynamics.

If we want to apply the replicator equation to a binary op-
timization problem of size 	, we have to set � � ��. Thus the
number of species is exponential in the size of the problem.
The replicator equation can be used for small size problems
only.

Voigt [Voi89] had the idea, to generalize the replicator
equation by introducing continuous variables � � � ��
�� � �
with

�
� ���
�� � �. Thus ���
�� can be interpreted as uni-

variate probabilities. Voigt [Voi89] proposed the following
discrete equation.

Definition 7.1. The Discrete Diversified Replicator Equation
DDRP is given by
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The name Discrete Diversified Replicator Equation was
not a good choice. The DDRP is more similar to Wright’s
equation than to the replicator equation. This is the content
of the next theorem.

Theorem 7.2. If the average fitness # ��� is used as po-
tential, then Wright’s equation and the Discrete Diversified
Replicator Equation are identical.

We recently discovered that Baum and Eagon [BE67] have
proven a discrete maximum principle for certain instances of
the DDRP.

Theorem 7.3 (Baum-Eagon). Let � ��� be a polynomial
with nonnegative coefficients homogeneous of degree ! in its
variables ���
�� with ���
�� 
 � and

�
�
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�� � �. Let
���� �� be the point given by
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(7.2)

The derivatives are taken at ����. Then � ���� � ��� �
� ����� unless ���� �� � ����

Equation 7.2 is exactly the DDRP with a potential � .
Thus the DDRP could be called the Baum-Eagon equation.
From the above theorem the discrete maximum principle for
Wright’s equation follows by setting � � # and ! � 	.
Thus the potential is the average fitness, which is homoge-
neous of degree 	.

7.2 Some System Dynamics Equations for Optimization

The theorem of Baum Eagon shows that both, Wright’s equa-
tion and the DDRP, maximize some potential. This means
that both equations can be used for maximization. But there is
a problem: both equations are deterministic. For difficult op-
timization problems, there exists a large number of attractors,
each with a corresponding attractor region. If the iteration
starts at a point within the attractor region, it will converge to
the corresponding attractor at the boundary. But if the itera-
tion starts at points which lie at the boundary of two or more
attractors, i.e on the separatrix, the iteration will be confined
to the separatrix. The deterministic system cannot decide for
one of the attractors.

���� with a finite population does not have a sharp
boundary between attractor regions. We model this behavior
by introducing randomness. The new value � ��
� � � � �� is
randomly chosen from the interval

���� ���	��
� � �� ��� �� � ���	��
� � �� ���

�	��
� � � � �� is determined by the deterministic equation. �
is a small number. For � � � we obtain the deterministic
equation. In order to use the difference equation optimally,
we do not allow the boundary values � � � � or �� � �. We
use �� � �	�� and �� � �� �	�� instead.

A second extension concerns the determination of the so-
lution. All dynamic equations presented use variables, which
can be interpreted as probabilities. Thus instead of wait-
ing that the dynamic system converges to some boundary
point, we terminate the iteration at a suitable time and gen-
erate a set of solutions. Thus, given the values for � ��
��
we generate points 
 according to the ���� distribution
���� �

��
��� ���
��.

We can now formulate a family of optimization algo-
rithms, based on difference equations (DIFFOPT).

DIFFOPT

� STEP 0: Set � � and ���
� � �� � ��� Input �	��.

� STEP 1: Compute �	��
� � � � �� according to a dy-
namic difference equation. If � 	��
� � � � �� � �	��

then �	��
� � ���� � �	��. If �	��
� � ���� � �� �	��

then �	��
� � �� �� � �� �	��

� STEP 2: Compute randomly ���
� � � � �� in the in-
terval �� � ���	��
� � � � ��� �� � ���	��
� � � � ��. Set
� �� �

� STEP 3: If termination criteria are not met, go to STEP
1.

� STEP4: Generate � solutions according to
���� �� �

��
��� ���
�� �� and compute 4&
����

and &)(4&
����

�2��.-> is not restricted to Wright’s equation or
DDRP. The numerical efficiency of �2��.-> needs ad-
ditional study.



8 Three Royal Roads to Optimization

In this section we will try to classify the different approaches
presented. Population search methods are based on two com-
ponents at least – selection and reproduction with variation.
In our research we have transformed genetic algorithms to a
family of algorithms using search distributions instead of re-
combination/mutation of strings. The simplest algorithm of
this family is the univariate marginal distribution algorithm
����.

Wright’s equation describes the behavior of ���� us-
ing an infinite population and proportionate selection. The
equation shows that ���� does not primarily optimize the
fitness function ����, but the average fitness of the population
# ���which depends on the continuous marginal frequencies
���
��. Thus the important landscape for population search is
not the landscape defined by the fitness function ����, but the
landscape defined by # ���.

The two components of population based search methods
— selection and reproduction with variation — can work on a
microscopic (individual) or a macroscopic (population) level.
The level can be different for selection and reproduction. It is
possible to classify the different approaches according to the
level the components work. The following table shows three
classes of evolutionary algorithms, each with a representative
member.

Algorithm Selection Reproduction
Genetic Algorithm microscopic microscopic
UMDA microscopic macroscopic
System Dynamics macroscopic macroscopic

A genetic algorithm uses a population of individuals. Se-
lection and recombination is done by manipulating individual
strings. ���� uses marginal distributions to create indi-
viduals. These are macroscopic variables. Selection is done
on a population of individuals, as genetic algorithms do. In
the system dynamics approach selection is modeled by a spe-
cific dynamic difference equation for macroscopic variables.
We believe that a fourth class — macroscopic selection and
microscopic reproduction — makes no sense.

Each of the approaches have their specific pros and cons.
Genetic algorithms are very flexible, but the standard recom-
bination operator has limited capabilities. ���� can use
any kind of selection method which is also used by genetic
algorithm. ���� be extended to an algorithm which uses
a more complex factorization of the distribution. This is
done by the factorized distribution algorithm FDA. Selection
is very difficult to model on a macroscopic level. Wright’s
equation are valid for proportionate selection only. Other se-
lection schemes lead to very complicated system dynamics
equations.

Thus for proportionate selection and gene pool recombi-
nation all methods will behave similarly. But each of the
methods allows extensions which cannot be modeled with an
approach using a different level.

Mathematically especially interesting is the extension of

���� to ��� with an adaptive Boltzmann annealing
schedule. For this algorithm convergence for a large class
of discrete optimization problems has been shown.

8.1 Boltzmann Selection and the Replicator Equation

Wright’s equation transforms the discrete optimization prob-
lem into a continuous one. Thus mathematically we can try to
optimize # ��� instead of ����. For ��� with Boltzmann
selection we even have a closed solution for the probability
���� ��. It is given by
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�����"

�����

 �����"

����
(8.1)

If we differentiate this equation we obtain after some compu-
tation
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(8.2)
For 7	 � � we obtain a special case of the replicator equation
7.1. We just have to set ���� � ��.

Theorem 8.1. The dynamics of Boltzmann selection with
�7��� � � is given by the replicator equation.

From the convergence theorem 5.1 we know that the
global optima are the only stable attractors of the replicator
equation. Thus the replicator equation is an ideal starting
point for a system dynamics approach to optimization dis-
cussed in Section 7. Unfortunately the replicator equation
consists of �� different equations for a problem of size 	.

Thus we are lead to the same problem encountered when
analyzing the Boltzmann distribution. We have to factorize
the probability ���� if we want to use the equation numeri-
cally.

Example 8.1. Linear function ���� �
��

� $�
�. In this case
the ���� factorization is valid ���� �

��
��� ���
��. By

summation we obtain from equation 8.2 after some manipu-
lation
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For 7	 � � this is just Wright’s equation without the denomi-
nator �# .

if we extend this equation we obtain another proposal for
the systems dynamics approach to optimization
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This equation needs further numerical studies. The speed of
convergence can be controlled by setting 7 	. With

!7

!�
�

�

=
(8.5)

an interesting alternative to Wright’s equation is obtained.
Further numerical studies are needed.



9 Conclusion and Outlook

This chapter describes a complete mathematical analysis of
evolutionary methods for optimization. The optimization
problem is defined by a fitness function with a given set of
variables. Part of theory consists of an adaptation of classical
population genetics and the science of breeding to optimiza-
tion problems. The theory is extended to general population
based search methods by introducing search distributions in-
stead of doing recombination of strings. This theory can be
also used for continuous variables, a mixture of continuous
and discrete variables as well as constraint optimization prob-
lems. The theory combines learning and optimization into a
common framework based on graphical models.

We have presented three approaches to optimization. We
believe that the optimization methods based on search distri-
butions (UMDA,FDA,LFDA) have the greatest optimization
power. The dynamic equations derived for ���� with pro-
portionate selection are fairly simple. For ���� with trun-
cation or tournament selection and ��� with conditional
marginal distributions, the dynamic equations can become
very complicated. FDA with Boltzmann selection SDS is an
extension of simulated annealing to a population of points.
It shares with simulated annealing the convergence property,
but convergence is much faster.

Ultimately our theory leads to a synthesis problem: find-
ing a good factorization for a search distribution defined by
a finite sample. This is a central problem in probability the-
ory. One approach to this problem uses Bayesian networks.
For Bayesian networks numerically efficient algorithms have
been developed. Our ���� algorithm computes a Bayesian
network by minimizing the Bayesian Information Criterion.

The computational effort of both��� and���� is sub-
stantially higher than that of ����. Thus ���� should
be the first algorithm to be tried in a practical problem. Next
the Multi-Factorization ���� should be applied.

Our theory is defined for optimization problems which are
defined by quantitative variables. The optimization problem
can be defined by a cost function or a complex process to be
simulated. The theory is not applicable if either the optimiza-
tion problem is qualitatively defined or the problem solving
method is non-numeric. A popular example of a non-numeric
problem solving method is genetic programming. In genetic
programming we try to find a program which optimizes the
problem, not an optimal solution. Understanding these kind
of problem solving methods will be a challenge for the new
decade.

Theoretical biology faces the same problem. The most
succcessful biological model is the foundation of classical
population genetics. It is based on Mendel’s laws and a sim-
ple model of Darwinan selection. The model has also been
used in his paper, it is purely quantitative. But this model is
a too great simplification of natural systems. The organism is
not represented in the model. As such the model has lead to
Ultra-Darwinism with the concept of selfish genes. What is
urgently needed is a model of the organism. This model has

to incorporate all three aspects of organisms - structure, func-
tion, and development or being, acting, and becoming. Karl
Popper has formulated it the following way: The whole life is
problem solving. Gene frequencies cannot explain the many
problem solving capabilities found in nature.

Bibliography

[AM94a] H. Asoh and H. Mühlenbein. Estimating the
heritability by decomposing the genetic vari-
ance. In Y. Davidor, H.-P. Schwefel, and
R. Männer, editors, Parallel Problem Solv-
ing from Nature, Lecture Notes in Computer
Science 866, pages 98–107. Springer-Verlag,
1994.

[AM94b] H. Asoh and H. Mühlenbein. On the mean con-
vergence time of evolutionary algorithms with-
out selection and mutation. In Y. Davidor, H.-
P. Schwefel, and R. Männer, editors, Parallel
Problem Solving from Nature, Lecture Notes in
Computer Science 866, pages 88–97. Springer-
Verlag, 1994.

[Bal97] D.H. Ballard. An Introduction to Natural Com-
putation. MIT Press, Cambridge, 1997.

[BE67] L.E. Baum and J.A. Eagon. An inequality with
applications to statistical estimation for proba-
bilistic functions of markov processes and to
a model for ecology. Bull. Am. Math. Soc.,
73:360–363, 1967.

[Bou94] R.R. Bouckaert. Properties of bayesian net-
work learning algorithms. In R. Lopez de Man-
taras and D. Poole, editors, Proc. Tenth Confer-
ence on Uncertainty in Artificial Intelligence,
pages 102–109, San Francisco, 1994. Morgan
Kaufmann.

[CF98] F.B. Christiansen and M.W. Feldman. Al-
gorithms, genetics and populations: The
schemata theorem revisited. Complexity, 3:57–
64, 1998.

[dlMT93] M. de la Maza and B. Tidor. An analysis of
selection procedures with particular attention
paid to proportional and boltzmann selection.
In S. Forrest, editor, Proc. of the Fifth Int. Conf.
on Genetic Algorithms, pages 124–131, San
Mateo, CA, 1993. Morgan Kaufman.

[Fal81] D. S. Falconer. Introduction to Quantitative
Genetics. Longman, London, 1981.

[Fre98] B.J. Frey. Graphical Models for Machine
Learning and Digital Communication. MIT
Press, Cambrigde, 1998.



[Gei44] H. Geiringer. On the probability theory of link-
age in mendelian heredity. Annals of Math.
Stat., 15:25–57, 1944.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, 1989.

[HCPGM99] G. Harik, E. Cantu-Paz, D.E. Goldberg, and
B.L. Miller. The gambler’s ruin problem, ge-
netic algorithms, and the sizing of populations.
Evolutionary Computation, 7:231–255, 1999.

[Hol92] J.H. Holland. Adaptation in Natural and Arti-
ficial Systems. Univ. of Michigan Press, Ann
Arbor, 1975/1992.

[HS98] J. Hofbauer and K. Sigmund. Evolutionary
Games and Population Dynamics. Cambridge
University Press, Cambridge, 1998.

[Jor99] M.I. Jordan. Learning in Graphical Models.
MIT Press, Cambrigde, 1999.

[Lau96] St. L. Lauritzen. Graphical Models. Clarendon
Press, Oxford, 1996.

[MHF94] M. Mitchell, J.H. Holland, and St. Forrest.
When will a genetic algorithm outperform hill
climbing? Advances in Neural Information
Processing Systems, 6:51–58, 1994.

[MM99a] H. Mühlenbein and Th. Mahnig. Convergence
theory and applications of the factorized distri-
bution algorithm. Journal of Computing and
Information Technology, 7:19–32, 1999.

[MM99b] H. Mühlenbein and Th. Mahnig. FDA – a scal-
able evolutionary algorithm for the optimiza-
tion of additively decomposed functions. Evo-
lutionary Computation, 7(4):353–376, 1999.

[MM00] H. Mühlenbein and Th. Mahnig. Evolution-
ary algorithms: From recombination to search
distributions. In L. Kallel, B. Naudts, and
A. Rogers, editors, Theoretical Aspects of
Evolutionary Computing, Natural Computing,
pages 137–176. Springer Verlag, 2000.

[MMO99] H. Mühlenbein, Th. Mahnig, and A. Rodriguez
Ochoa. Schemata, distributions and graphical
models in evolutionary optimization. Journal
of Heuristics, 5:215–247, 1999.

[MSV94] H. Mühlenbein and D. Schlierkamp-Voosen.
The science of breeding and its application to
the breeder genetic algorithm. Evolutionary
Computation, 1:335–360, 1994.

[Müh97] H. Mühlenbein. The equation for the response
to selection and its use for prediction. Evolu-
tionary Computation, 5(3):303–346, 1997.

[MV96] H. Mühlenbein and H.-M. Voigt. Gene pool
recombination in genetic algorithms. In J.P.
Kelly and I.H Osman, editors, Metaheuristics:
Theory and Applications, pages 53–62, Nor-
well, 1996. Kluwer Academic Publisher.

[Nag92] T. Nagylaki. Introduction to Theoretical Popu-
lation Genetics. Springer, Berlin, 1992.
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