Evolutionary Optimization and the Estimation of Search
Distributions with Applications to Graph Bipartitioning

H. Miihlenbein Th. Mahnig

RWCP! Theoretical Foundation GMD? Laboratory
D-53754 Sankt Augustin

muehlenbein@gmd.de

Abstract

We present a theory of population based optimization methods using approximations of search
distributions. We prove convergence of the search distribution to the global optima for the
Factorized Distribution Algorithm FDA if the search distribution is a Boltzmann distribution
and the size of the population is large enough. Convergence is defined in a strong sense—the
global optima are attractors of a dynamical system describing mathematically the algorithm.
We investigate an adaptive annealing schedule and show its similarity to truncation selection.
The inverse temperature [is changed inversely proportionally to the standard deviation of
the population. We extend FDA by using a Bayesian hyper parameter. The hyper parameter
is related to mutation in evolutionary algorithms. We derive an upper bound on the hyper
parameter to ensure that FDA still generates the optima with high probability. We discuss
the relation of the FDA approach to methods used in statistical physics to approximate a
Boltzmann distribution and to belief propagation in probabilistic reasoning. In the last part, we
apply the algorithm to an important practical problem, the bipartioning of large graphs. We
assume that the graphs are sparsely connected. Our empirical results are as good or even better
than any other method used for this problem.

Keywords

genetic algorithms, linkage equilibrium, factorization of distributions, Boltzmann distribution,
adaptive annealing, Kullback-Leibler divergence, advanced mean field methods, stochastic
processes

1 Introduction

In this paper we analyze evolutionary algorithms from the perspective of stochastic
processes. There are at least three views on stochastic processes— the microscopic view,
the mesoscopic view, and the macroscopic view.

In the microscopic view the dynamic behaviour of a population of objects is simu-
lated. In genetic algorithms, for instance, a set of points is generated. From this set
promising points (points with high fitness) are selected. These points are used as the
"parents” of the next set. Each run is unique, therefore a mathematical analysis is
almost impossible.

'Real World Computing Partnership
2GMD - Forschungszentrum Informationstechnik

In the mesoscopic view a probability distribution p(x,t) is introduced. From an
initial distribution p(x,0) a population (ensemble) is generated. Promising points are
selected. The corresponding distribution of the selected points p*(x,t) is estimated and
then used to generate new points. Holland [8] tried a mesoscopic analysis of genetic
algorithms with his schema theory. We will show that using marginal and conditional
distributions instead of schemata makes the analysis easier and tractable.

In the macroscopic view one is interested in macroscopic variables only, like the aver-
age fitness Ey[f(x)] = > p(x,t)f(x). In many physical applications simplified equations
describing the evolution of macroscopic variables can be derived.

In this paper we concentrate on the mesoscopic view. This view has been developed
for the analysis of stochastic processes [32]. Despite the fact that the microscopic system
and the mesoscopic system are strongly related, the derivation of mesoscopic equations
from the microscopic system is very difficult. This is the reason that the microscopic
view dominates the field.

We will mainly use the terminology of dynamic stochastic systems. For our algo-
rithms the approximation of the Boltzmann distribution by a product of conditional
distributions will be of central importance. We will show the relation of this approach
to methods used in probabilistic reasoning and probabilistic logic. Such a relation has
been predicted by von Neumann [34]: “This new system of formal logic will move closer
to another discipline which has been little linked in the past with logic. This is ther-
modynamics, primarily in the form it was received from Boltzmann, and is that part
of theoretical physics which comes nearest in some of its aspects to manipulating and
measuring information. Its techniques are much more analytical than combinatorial.”

Thus our theory is part of a general theory starting now to unify disciplines like
statistical physics, probabilistic reasoning, and probabilistic logic. This paper extends
the survey of Larranaga and Lozano [15] with an interdisciplinary perspective.

The outline of the paper is as follows. In sections 2,3, and 4 we recapitulate the
foundations of evolutionary algorithms based on search distributions. In section 5 an
adaptive annealing schedule for Boltzmann selection is derived. In section 6 the use
of Bayesian hyper parameters is investigated. We discuss in section 7 how good our
proposed algorithm approximates Boltzmann distributions. In section 8 we show that
our algorithm fulfills an equation derived by Holland for an almost “optimal” search
algorithm. Then we discuss algorithms from statistical physics which have been used to
approximate a Boltzmann distribution. In the last section we apply our algorithm to an
important combinatorial optimization problem — the bipartitioning of graphs.

2 The Simple Genetic Algorithm and UM DA

The theory presented is valid for discrete, but also for continuous variables. For simplicity
we restrict the discussion to binary variables z; € {0,1}. Let x = (z1,...,z,) denote
a binary vector. We use the following conventions. Capital letters X; denote variables,
small letters z; assignments.

Definition 1. Let a function f : X — R2" be given. We consider the optimization

problem
Xopt = argmax f(x) (1)

We will use f(x) as the fitness function for the standard genetic algorithm, also called
the Simple Genetic Algorithm (SGA). The algorithm is described by Holland [8] and
Goldberg [6]. It consists of fitness proportionate selection, recombination/crossover,
mutation. For the stochastic analysis marginal distributions will be important.

Definition 2. Let p(x,t) denote the probability of x in the population at generation t.
Let z denote a sub-vector of x. Then p(z,t) = Zx’Zi:zl,p(x,t) defines a marginal distri-
bution. Of special importance are the univariate marginal distribution, where z consists
of a single variable only. This is abbreviated by p;(x;,t). Conditional distributions are
defined by the Bayesian rule p(y|z) = p(y,z)/p(z). y and z are disjunct and their union
is a subset of x.

We often write p;(x;) if just one generation is discussed, and p; denote p;(x; = 1). The
average fitness of the population and the variance is given by

E[f(z)] = 3 p(x,1)f (%) 2)
V(t) = px,b) (fx) - f(1)° (3)

Proportionate selection changes the probabilities according to

Pt 1) = p(x,t>% (4)

With proportionate selection the average fitness never decreases. This is true for every
rational selection scheme. For the analysis of recombination we introduce a special
distribution.

Definition 3. Robbins’ proportions are given by the distribution w

n

m(x,t) := [[pili,t) (5)

i=1
A population in Robbins’ proportions is also called to be in linkage equilibrium.

Geiringer [5] has shown that all reasonable recombination schemes lead to the same
limit distribution.

Theorem 4 (Geiringer). Recombination does not change the univariate marginal fre-
quencies, i.e. p;(x;,t + 1) = p;(x;,t). The limit distribution of any complete recombina-
tion scheme is Robbins’ proportions m(x,0).

Complete recombination means that for each subset S of {1,...,n}, the probability
of an exchange of genes by recombination is greater than zero. Convergence to the limit
distribution is very fast. Robbins’ proportions are called the mean field assumption [25]
in physics.

If recombination is used for a number of times without selection, then the genotype
frequencies converge to linkage equilibrium. This means that all genetic algorithms are
identical if after one selection step recombination is done without selection a sufficient
number of times. This procedure keeps the population in linkage equilibrium. A simpler
method is used in our univariate marginal distribution algorithm UMDA. New search
points are generated from the distribution

p(x,t+1) = [pi (@i, 1) (6)
=1

Algorithm 1: UMDA

1t < 1. Generate N > 0 individuals X',..., ¥" randomly.
2 do{
3 Select M < N individuals ¥/ from ¥J according to a selection

method. Compute the sample marginal frequencies p{(z;,t) of the
selected set.

4 Generate N new points according to the distribution p(x,t + 1) =
H?:l pf ($i7 t)

5 t<=t+1

} until Termination criterion fulfilled.

(=

For mathematical clarity we denote the average fitness, seen as a function of the inde-
pendent variables p; as W (p1,...,pn). Then the following theorem is valid [21]:

Theorem 5 (Wright’s Equation). For infinite populations and proportionate selection
UMDA changes the gene frequencies as follows:

oW

pilt+1) = pil®) + PO = i) 7 s (7)

The relation between f(x) and W (p) is simple. One has just to change z; to p;. Thus
for f(x) = >, ;aijziz; we obtain W(p) = >, ;a;pipj. A detailed discussion about
Wright’s equation can be found in [21, 23].

Remark: p(x,t) describes a dynamical system with 2" variables. The dynamical system
is constrained to the unit simplex because of the constraints 0 < p(x) < 1land) p(x) =
1. UMDA with proportionate selection is related to a dynamical system described by
equation (7). The system is defined for discrete time steps. For mathematical clarity
we give the dynamical system a different name, UNI,. The index p indicates that the

equations are derived from UMDA with proportionate selection. The dynamical system
has attractors.

Theorem 6. The stable attractors of UNI, are at the corners, i.e p; € {0,1} i =
1,...,n. In the interior there are only saddle points where grad W(p)) = 0. The
attractors are local mazima of f(x) according to one bit changes. Thus UNI, solves the
continuous optimization problem argmax{W (p)} in S by gradient ascent [21].

Since the attractors are at the boundary (p; € {0,1}), UMDA with proportionate se-
lection will end with a population consisting of a single string x only, where x; = 0 if
p; =0 and z; = 1 if p; = 1. Another important result is that the average fitness never
decreases [19].

Theorem 7. For UNI, we have W (p(t + 1)) > W(p(t).

Note that the dynamical system UNI, can be used as an optimization method by
itself. One does iterate the difference equations (7) until convergence. This method is
investigated in [23]. Note that the selection method of UN1I, is proportionate selection.
The mathematical analysis of UMDA with truncation selection or tournament selection is
much more difficult. These selection methods can be easily programmed for UMDA, but
we have not been able to derive the difference equations for the corresponding dynamical
system. Thus UMDA is the much more flexible optimization method. The interested
reader is referred to [19, 23].

There exist many “convergence” theorems in genetic algorithm theory. But most of
them rely on the stochastic nature of evolutionary algorithms only. Convergence is de-
rived from the simple fact that all possible configurations are generated with probability
greater than zero. This convergence definition is uninteresting from a numerical point
of view. It does not specify how long it takes to converge and how convergence can be
observed. In contrast, UMDA is a very robust numerical algorithm. It usually converges
to populations where all individuals are equal. Furthermore, the average fitness increases
if the size of the population is large enough.

3 Schema Analysis Demystified

In this section we show that the original analysis of genetic algorithms is based on a
mesoscopic view. The theory has been developed by Holland [8]. It analyzes “schemata”
and their evolution in a population.

Definition 8. Let p(x,t) denote the probability of x in the population at generation t.
Let x5 = (%s,...,2s;) C {x1,...,2n}. Thus x5 denotes a sub vector of x defined by
the indices s1,...,s;. Then the probability of schema H(8) and its fitness f(H(8)) are
defined by

p(H(s),t) = Y px1) (8)

X[Xs=xs
_ x,t)f(x
f(H(s)., 1) Z”;,(;;(’:() t))f > 9)

The summation is done by keeping the values of x; fixed. Thus the probability of a
schema is given by the corresponding marginal distribution p(xs). Let us now assume
that we have an algorithm which generates new points according to the distribution of
selected points. With proportionate selection (equation (4)) we have

fx)

p(x,t+ 1) = p(x, t)m (10)

This can be seen as the ideal search distribution of SGA. The next theorem immediately
follows from the definitions.

Theorem 9 (Schema Theorem). For proportionate selection the probability of schema
H(s) is given by
Ey[f(x)]

Holland [Theorem 6.2.3][8] computed for SGA (a genetic algorithm with recombina-
tion and mutation) an inequality

p(H(s),t +1) = p(H(s), 1))

f(H(s),t)
Ei[f (x)]

0 is a small factor which captures the loss by mutation and crossover. The inequality only
complicates the analysis. An application of the inequality (12) is not possible without
computing E;[f(x)]. This in turn requires the computation of p(x,t). Goldberg [6]
circumvented this problem by assuming

f(H(s),t) 2 (1+c)Ei[f(x)] (13)

Then we have f(H(s),t) > (1+c)'p(H(s),0). But this assumption can never be fulfilled
for all £. When approaching an optimum, the fitness of all schemata in the population
will be only 1 &+ € away from the average fitness.

We will not cite all the folklore about the increase of the number of above average
schemata. It turns out that equation (10) admits an analytical solution.

p(H(s),t+1) > (1 —6)p(H(s,t)) (12)

Theorem 10 (Convergence). The distribution p(x,t) for proportionate selection is
given by
p(x,0)f(x)"
p(x,t) = 14
(1) >, Py, 0)f(y)* 14)

Let M be the set of global optima, then

/M| xeM

15
0 else (15)

Equation (14) was already used by Goldberg and Deb [7] in a different context. It
enables an exact schema analysis for an ideal genetic algorithm. This is a conceptual al-
gorithm because it needs an exponential amount of computation. But for small problems
the increase or decrease of any schema can be exactly computed.

In the next section we will extend the stochastic theory. The theory will require
conditional distributions. From the analysis we will derive a usable algorithm.

4 The Factorized Distribution Algorithm FDA

The simple product distribution of UMDA cannot capture dependencies between vari-
ables. But if dependencies are necessary to find the global optima, UMDA and simple
genetic algorithms fail. We need a more complex distribution to reach the optima. A
good candidate for optimization using a search distribution is the Boltzmann distribu-
tion.

Definition 11. For 8 > 0 define the Boltzmann distribution of a function f(z) as
o () I
pp\X) = >, P - Zi(B)

(16)

where Z;(f8) is the partition function. To simplify the notation B and/or f can be
omitted.

The Boltzmann distribution is usually defined as eI /Z. The term g(x) is called
the energy and T' = 1/ the temperature. The Boltzmann distribution concentrates
around the global optima of the function with increasing S . If it would be possible to
sample efficiently from this distribution for arbitrary £, optimization would be an almost
trivial task.

4.1 Boltzmann selection

Our proposed algorithm incrementally computes Boltzmann distributions by using Boltz-
mann selection.

Definition 12. Given a distribution p and a selection parameter A, Boltzmann se-
lection calculates the distribution of the selected points according to

p(x)e2B/()

We can now define the BEDA (Boltzmann Estimated Distribution Algorithm).
BEDA is a conceptual algorithm, because the calculation of the distribution requires
a sum over exponentially many terms. We have proven the following important conver-
gence theorem for it [24].

p*(x) (17)

Theorem 13 (Convergence). Let AS(t) be an annealing schedule, i.e. for every t
increase the inverse temperature 3 by AB(t). Then for BEDA the distribution at time t
s given by
(x.9 Bt f(x) as)
plx,t) = ———
Zp(B(t))

with the inverse temperature

Bty = AB(7). (19)
=1

Algorithm 2: BEDA — Boltzmann Estimated Distribution Algorithm

1 t < 0. Generate N points according to the uniform distribution
p(z,0) with 8(0) = 0.

2 do{
3 With a given ASZ(t) > 0, let
£)elBM) f (@)
(1) = p(z,t)e _
Zy p(y, t)eAﬁ(t)f(y)
4 Generate N new points according to the distribution p(z,t + 1) =
p*(z,).
5 t<=t+1.
6 } until (stopping criterion reached)

Let M be the set of global optima. If B(t) — oo, then

) Ym zeM
1 1) = 20
Jlim p(a, t) {0 Jlse (20)

We next transform BEDA into a practical algorithm. This means to reduce the
number of parameters of the distribution and to compute an adaptive annealing schedule.

4.2 Factorization of the distribution

In this section we describe a method for computing a factorization of the probability,
given an additive decomposition of the function:

Definition 14. Let sq,...,sy be index sets, s; C {1,...,n}. Let fs, be functions de-
pending only on the variables x; with j € s;. Then

f(x) = ZfZ(XSz) (21)
i=1
is an additive decomposition of the fitness function f.

We also need the following definitions

Definition 15. Given si,...,Sm, we define for i = 1,...,m the sets d;, b; and c;:
i
d; == U S, b; == s; \ d;_1, ¢ = 8; Ndj_q (22)
j=1
We set dg = 0.

In the theory of decomposable graphs, d; are called histories, b; residuals and ¢;
separators [16]. We now need the conditional probabilities from definition 2. In [24] we
have proven the following theorem.

Theorem 16 (Factorization Theorem). Let pg(x) be a Boltzmann distribution with

eBf ()
pa(x) =) (23)
and f(x)=>.1", fs;(x) be an additive decomposition. If
bi£0 Vi=1,...,1; d =X, (24)
Vi > 235 <4 such that c; C s; (25)

then
ps(x) =TI playlac,) (26)

The constraint defined as equation (25) is called the running intersection property.
The assumptions of the theorem are formally identical to the general factorization the-
orem of graphical models [16].

Algorithm 3: FDA — Factorized Distribution Algorithm

1 Calculate b; and ¢; from the decomposition of the function.
2 Generate an initial population with N individuals from the uniform

distribution.
s do{
4 Select N < N individuals using Boltzmann selection.
Estimate the conditional probabilities p(zp,|z.;, t) from the selected
points.
6 Generate new points according to p(z,t + 1) = [p(zs, |2, t)-
t<=t+1.

S I

} until (stopping criterion reached)

With the help of the factorization theorem, we can turn the conceptional algorithm
BEDA into FDA, the Factorized Distribution Algorithm. The factorized distribution is
identical to the Boltzmann distribution if the conditions of the factorization theorem are
fulfilled. Therefore the convergence proof of BEDA applies to FDA. FDA can in principle
be used with any selection scheme, but then the convergence proof is no longer valid.
We think that Boltzmann selection is an essential part in using the FDA. FDA with
Boltzmann selection is connected to a dynamical system which we denote MULT I).
It is defined by equation (23).

Because FDA uses finite samples of points to estimate the conditional probabilities,
convergence to the optimum will depend on the size of the samples (the population

size). FDA has experimentally proven to be very successful on a number of functions
where standard genetic algorithms fail to find the global optimum. In [20], the scaling
behaviour for various test functions has been studied. The estimation of the probabilities
and the generation of new points can be done in polynomial time.

In the next section we derive an adaptive annealing schedule, which connects Boltz-
mann selection to truncation selection used by breeders.

5 The adaptive annealing schedule SDS

Boltzmann selection needs a good annealing schedule. If we cool down (anneal) too fast,
the approximation error of the Boltzmann distribution due to the sampling error can be
very large. To consider an extreme case, if the annealing parameter is very large, the
second generation should only consist of the global maxima. But if we anneal too slowly,
then it takes a long time to approach the optima.

5.1 Taylor expansion of the average fitness

In order to determine an adaptive annealing schedule, we will make a Taylor expansion
of the average fitness. The average fitness Eg[f(z)] from equation 2 is now seen as a
function of the inverse temperature. We have proven [17]:

Theorem 17. The average fitness Eg[f(x)] using Boltzmann distributions has the fol-
lowing expansion in B:

5315) = Byl + 3 L e) (27)

i>1

where M are the centered moments

M{(B) == [f(z) — Bylf (2] 'p(a) (28)

T

They can be calculated using the derivatives of the partition function:

22:(8)\"
° _ (22 or 1 ¢

Corollary 18. We have approxzimatively
Ejf (2)] = Bslf (@)] = (B — B) - 07(B) (30)

where O'J%(B) is the wvariance defined as O']%(B) = M3$(B). For any B > B we have
E5(f(x)] > Eglf (2)] unless f(x) = const.

10

The proof of the above theorem can be found in [22]. Equation (30) was already proposed
in [13]. It is a macroscopic equation relating the average fitness and the variance. From
(30) we can derive an adaptive annealing schedule. We recall that truncation selection
has proven to be a robust and efficient selection scheme. For truncation selection the
response to selection R(t) [21] is approximatively given by equation

R(t) := Epp[f(2)] — E[f (2)] = I-b(t)oy(t) (31)

I is the selection intensity which depends on the truncation threshold 7. We will make
the Boltzmann schedule to mimic truncation selection by setting AS3(¢) accordingly.

Definition 19. The standard deviation schedule SDS is defined by 5(t+1) = B(t)+
c/op(B(t)).

Using SDS we obtain from equation (30)
R(t) = Eg(1)Lf (2)] — Eg [f ()] = c- 04 (2) (32)

Thus SDS with Boltzmann selection behaves similarly to truncation selection if ¢ =
I.b(t). We recently found that SDS has already been used for genetic algorithms in [30].
But there SDS has been derived from a different perspective.

5.2 Linear functions

We will show the connection between SDS and truncation selection for linear functions
Linear(x Z a;T; (33)

We easily compute
eﬁf(x) n eﬂaixi

X) = = 34
/8() Zf(,B) Pt 1_,_65@1. ()
Thus we have 5
eP i
pi(B) = pp(wi=1) = g (35)

For a linear function the variance is just the sum of the variance of the individual
variables, therefore

n a eﬁaz

o7 (B) = Z 1+ cPar)2 Z a;pi(B) (1 — pi(B)) (36)

=1

The SDS schedule is given by

(37)

Alt+1) = p(t) +

11

We approximate the difference equation by a differential equation:

dg c
— = (38)
S (B) (1 - pi(B)
If we differentiate equation (35) we obtain
dpi(B) aieP¥(1 + ePou)B — ePligeleip
dt (1 + ePai)?
=pi(B) (1 — pi(B)) i % (39)

These equations define a dynamical system in continuous time. If we insert equation
(38) we obtain

dpi(B) _ . pi(B) (L = pi(B))ai
dt \/Zia?pi(ﬁ)(l - pi(B))

The differential equations remains the same if we multiply all a; by a constant factor.
For Onemax we have a;=1. In this case all marginal frequencies are equal and we can
set pg := p;(B). We obtain the differential equation

(40)

D5 _ ¢\ fos(1 — pp)/m (41)

dt
This differential equation has been derived for truncation selection in [19]. There the
solution can be found.

6 Mutation and the Hyper Parameter r

UMDA and FDA can be run without a parameter corresponding to mutation in genetic
algorithm. In order to obtain good solutions, the size of the population has to be chosen
accordingly. But there is an easy way to introduce “mutation”. Normally the empirical
probability is estimated by p; = m/N. Here m denotes the number of occurrences of
z; = 1 in a sample of size V. But in the Bayesian approach the estimated probability is
set to p;=(m+r)/(N +2r). The hyper parameter r has to be chosen in advance [9]. The
hyper parameter is a simple example of a Bayesian prior. It is related to mutation in
genetic algorithms works. Mutation works in the following way: When generating new
individuals, with a probability of u the generated bit is inverted.

Theorem 20. For binary variables, the expectation value for the probability using a
hyper parameter r is the same as mutation with mutation rate p = r/(N +2r) and using
the mazimum likelihood estimate.

The theorem can easily be proven by calculating the probability of generating a
particular bit for both cases. Wright’s equation can be extended to include mutation
(or equivalently a hyper parameter r) [23]. The extended equation defines a dynamical

12

system which we call UNI,(r). r > 0 moves the attractors from the boundary of the
hypercube into the interior. For r — oo there is a unique attractor at p = 0.5. The
hyper parameter can also be used for UMDA. This algorithm we call UMDA(r). The
relation between the attractors of UNI,(r) and the populations generated by UMDA(r)
is as follows.

Let 0 < pf(z;) < 1 denote the values of an attractor of UNI,(r). Then UMDA(r)
will generate for ¢t — oo populations according to

p(x,00) = [pi (i)
=1

The dynamical system UNI,(r) has converged to an attractor, but UMDA(r) generates
populations which can be very different from each other. Thus in order to be able to
observe convergence for UMDA(r), we require that the attractor is nearby the boundary.
To be more specific: 7 should be so small that an attractor nearby a global optimum
should enable UMDA(r) to generate the optimum with a high probability, say about
30%. Thus we consider mutation to be a background operator.

The problem of determining a suitable r for UMDA with proportionate and trunca-
tion selection has been investigated in [23]. We obtained the following rule of thumb:

For truncation selection with selection intensity I use a value of r = I.M/n. T is the
proportion of individuals selected, M = TN .

We now compute the attractors of the dynamical system MU LT Ig;) behaving for a
linear function similar to UM D A(r) with Boltzmann selection and a large population.
Let the linear function be defined by Linear(z) = > a;x;. For Boltzmann selection we

easily compute
pi(t)e2o

PO = 1) a7 = 1))

We now assume our recommended prior of 7 = aN/n. Then we obtain

. PN+ npi(t) + «
pit+1) = N+2r n+2a (43)

This gives
pilt+1) = np;(t)e® 28 + o + ap;(t)(e¥ 2P — 1) (44)
(n + 20) (1 + p;(t)(e®4F — 1))
Equilibrium is reached when p;(t + 1) = p;(¢). This is a quadratic equation. Let v; =
a; AB. Then the positive solution is given by

(e —1)(n+a) —2a+ \/((e%‘ - 1(n+a)— 2a)2 + da(e¥i — 1)(n + 2a)
2(e7 = 1)(n + 2a)

b = (45)

In order to compute a numerical example we set a; = 0.5 and o = 1. In Figure 1
the probability P} = [[i, p} of generating the optimum is displayed. There is almost

13

0.5 T T T T
04l .
03 i
* 227
o’ s
02+ “,r" i
({'AA
01| / n=10]
/ n=100 -------
g n=1000 --------
0 1 1
0 1 2 3 4 5

Ap

Figure 1: Value of Ps, the probability to generate the optimum, when varying £ using
equation (44)

no difference between n = 100 and n = 1000. But we have to use A = 3 in order to
have a probability of 0.3 to generate the optimum. This demonstrates the weakness of
a fixed annealing schedule.

For the SDS schedule we have AS(t) = ¢/o(t). In this case an analytical solution
of equation (44) cannot be obtained. But the fix-points can be obtained numerically by
iteration until p;(t+1) = p;(¢). In the next table the results for different linear functions
are displayed. The function Linearn. is defined by a; = i, the function Exp;,., by
a; = 27. The probability to generate the optimum is about 0.15 — with the exception of
Exp;pe0.0- For this function a smaller prior has to be used. If we use r = 0.5N/n then
P’ =0.165.

Function | Onemax(16) | Lineari,. | Exp;ne15 | EXDineso | Onemax(100)
p* 0.214 0.170 0.159 0.053 0.147

We next compare the theoretical results with simulation runs of UM DA(r). In
table 1 the univariate marginal frequency p; is shown. Note that the attractors of SDS
are fairly independent from the size of the population.

Params Theory | Simulation
n =100,A8 =1,N =100 0.98458 | 0.9843
n =100,A8 =1, N = 1000 0.9846 | 0.9863
n =100,A8 =1,N =30 0.9846 | 0.9881

n=100,A8=2,N=1000 | 0.9887 | 0.9891
n =100,A8 = 0.25,N = 1000 | 0.9572 | 0.9766
n = 100, SDS, N = 100 0.9814 | 0.9862
n = 100, SDS, N = 30 0.9814 | 0.9817

Table 1: Attractor p* for Onemax and MU LT Iy

14

6.1 Calculating a bound of the hyper parameter for FDA

The theory of Bayesian hyper parameters can be extended to conditional probabilities
[2]. Our analysis will be very crude, giving a rule of thumb to be tested in practice. The
chain rule of conditional probabilities says that

p(@1,. .y ak) = p(e1) - plazlzr) - pls|zr,) - - plaglr, ... 2p-1) (46)
Using the Bayesian estimates, we get the following equation:
N(:El,... ,,’L‘k) + 7! _N(.’L‘l) + 7 ‘ N((L‘l,.’L‘Q) + 79 ‘ N((L‘l,.’L‘Q,.’L‘?,) + 173
N + 2kp! - N +2r N(zy) +2ro N(z1,29) + 213

) N(z1,...,25) + 1y
N(z1,...,2p-1) + 27},

(47)

where N(-) = N -p(-) is the number of occurrences in the population. The denominators
were chosen in such a way that th---,wk p(z1,...,xx) =1 and inp(xﬂml, ceyTj1) =
1.

In order for (47) to hold, the fractions on the right hand side have to cancel each
other out. We get the following identities for the parameters:

i =riig = r;=2"0"Up and ¢ =r, =2"Fp (48)

Thus we have obtained the rule of thumb:

Let v be the hyper parameter for a single binary variable. Then the hyper parameter r'

for a marginal distribution p(z1,...,xE) and the hyper parameter r* for a conditional
distribution p(zk|x1,--- ,xx_1) should be
P o=t =27k (49)

It is not possible to evaluate the rule of thumb for real attractors defined by the
dynamic equilibrium between selection and mutation. We test our proposal assuming
that the selected points are at the boundary. Let the probability distribution be the
product of marginal distributions of k; variables each. Then we have [= n/) k; factors.
The probability P; of generating the optimum is at most

!
N+
P = —_—
s g(N—i—Qki-r’) (50)
where 7' = 2=(ki=Dr_ If we set = N/n then
! . ! ,
n + 2~ (ki—1) 2(1 - Q_kl)
P = — | = l1—-—) >03 o1
° ZHI (n+2 ZHI < n+ 2 - (51)

Thus using our rule of thumb we generate the optimum with a probability greater
than 0.3.

15

6.2 UMDA with very small population size

Formally UMDA(r) can run with a very small population size N and a small number
of selected points M. It fulfills the requirements of weak convergence: with probability
greater than zero it will find the optima. UMDA(r) with a tough selection (M = 2) can
be seen as a stochastic local search algorithm with an unrestricted neighborhood. The
points of the neighborhood are not chosen uniformly, but points with a small Hamming
distance to the selected points are chosen more often. In fact, this algorithm can be seen
as an instance of an (2, N) evolution strategy [1] adapted to discrete variables.

We will discuss the case M = 2 in more detail. With two selected points only three
different values of p; are possible, namely 0,0.5,1. Our recommended hyper parameter
is 7 = I; - 2/n. The relation between N and M is captured by I.. The larger N, the
larger will be r. For N = 4 we have 7 = 0.5 and I, = 0.8 [19]. This gives r = 1.6/n.
Thus UMDA(r) generates new points with p; =7/(2+2r) if m =0, p;, =05if m =1
and p; =1 —r/(2+ 2r) if m = 2. m denotes the number of instances of z; = 1 in the
two selected points.

pi(M+
p(x,t+1) H mam s M+2r (52)

We now investigate the behaviour by simulations. The functions to be optimized
are Onemax and Jump. The function Jump has a valley of gap bits before the global
optimum consisting of all bits set to 1. At the bottom of the valley the fitness values
are set to 0. Thus Onemax can be seen as a Jump with a gap of 0.

gap | 96| 64| 48| 24 12 12(0.5) 6(0.5) 4(0.5) 1
0 801 | 566 | 457 | 348 | 345 449 697 2527 8020
1] 768 | 627|480 | 456 | 610 646 3042 | (80)13038 | (30)14682
2| 860 | 693 | 544 | 769 | 4996 4555 | (90)10917 - -
3| 1113 | 1213 | 921 | 3727 | 36333 | (60)42686) - - -

Table 2: Function evaluations for different population sizes, n = 50, 7 = 0.25; 7 = 0.5
for three cases; number in parentheses is success rate out of 100 runs.

From table 2 we conclude that for gap = 0 the best result is obtained with N = 12.
For gap = 3 a larger value, N = 48, gives the best result. Small population sizes do not
reach the optimum in reasonable time. A small population has difficulties to jump over
the valley. With a hyper parameter r a population size too small is much worse than
a population size too large. The larger gap, the larger is the population size giving the
best results.

7 FDA and the approximation of the Boltzmann distribution

FDA approximates the Boltzmann distribution in a way not used before. It starts
with a uniform distribution. Then Boltzmann selection is applied to compute the new

16

parameters of the distribution. New points are generated using these estimates. For an
infinite population we get an exact Boltzmann distribution at every generation (step).
But as we use a finite sample, the Boltzmann distribution will only be approximated. A
hyper parameter makes the algorithms more robust concerning the population size and
premature convergence. But it moves the empirical distribution even more away from a
desired Boltzmann distribution. We will now investigate the approximation error. The
following cases will be distinguished:

e FDA with exact factorization and r = 0

e FDA with exact factorization and the recommended hyper parameter

e FDA with approximate factorization and r =0

e FDA with approximate factorization and recommended hyper parameter

For the analysis the Kullback-Leibler divergence between the generated distribution
(by FDA) and a Boltzmann distribution is used. For the Boltzmann distribution we
have two choices. We can assume that in every generation [is changed according to
Boltzmann selection by 8 < §+ ApB. This value is subsequently used for the Boltzmann
distribution. In our second choice we compute [3,,; giving the smallest Kullback-Leibler
divergence of a Boltzmann distribution to the empirical distribution.

The Kullback-Leibler divergence of two distributions is defined as

DK (pllg) = 3 p(x) In % (53)

with p(x) Inp(x) = 0 when p(x) = 0. The divergence is infinite for p(x) # ¢(x) = 0.
If pg is the Boltzmann distribution and ¢ the empirical distribution, we compute

DXL (qllpg) = Y q(x)Ing(x) +InZz — B> q(x)f(x) (54)
KL 27
Do) B2 S = Bl - Bl (59

X

where Fj3[f(x)] is the average fitness according to the pg distribution and E,[f(x)] is
the average fitness according to the ¢ distribution. We have numerically solved equation
ODEL /9B = 0 to obtain the values B, in table 7.

We use two functions, Deceplb, and Gridl6 as example. Deceplb is a separable
function. It consists of five blocks of three variables. Gridl6 is defined on a 4*4 grid.
For this function we have used an approximate factorization using factors of four or three
variables. The exact definition of the functions is not necessary.

For both problems DX first increases slightly. It decreases when the algorithm ap-
proaches an attractor. D*' is larger for the approximate factorization and when FDA is
used with a hyper parameter. But in all cases DX is surprisingly small. For comparison
we also show the difference of the UMDA factorization to a Boltzmann distribution. It is
much higher. This factorization is not able to approximate the Boltzmann distribution.

17

Func N || prior | iter B DKL Bopt | DEL
Gridl6 100 no 1 0.736 1.051 0.728 1.051
2 1.630 1.779 1.362 1.757

6 8.924 1.596 7.437 1.544

7 15.505 0.798 14.158 0.790

100 yes 1 0.797 1.061 0.541 | 1.001

2 1.699 1.705 1.124 1.453

6 5.378 2.578 3.113 | 1.425

7 6.359 3.023 3.597 1.469

Decepl5 100 no 1 0.389 0.673 0.467 | 0.672
2 0.829 0.787 0.829 | 0.787

6 4.159 0.085 4.065 | 0.085

7 8.349 0.001 12.022 0.001

100 yes 1 0.428 0.341 0.351 | 0.315

2 0.864 0.907 0.600 | 0.672

6 2.738 2.972 1.320 | 0.421

7 3.216 2.851 1.551 0.392

Decep15(UMDA) 100 no 1 0.472 1.021 0.004 | 0.153
2 0.934 3.780 0.020 | 0.311

6 2.551 17.945 0.343 | 2.584

7 2.921 | 16.435 0.679 | 3.543

Table 3: Results of Kullback-Leibler divergences, n = 15/16

8 Holland’s schema analysis and the Boltzmann distribution

We will now turn back to the analysis of genetic algorithms made by Holland. We will
use Holland’s notation. £ denotes a schema, the probability P(¢,t) has been defined in
equation (8), and the average fitness /i¢(t) is given by equation (9). Holland makes the
following conjecture about a good population based search algorithm

Holland ([8],p.88): FEach (schema) & represented in (the current population) B(t)
should increase (or decrease) in a rate proportional to its observed usefulness pig(t) — fi(t)
(average fitness of schema & minus average fitness of the population)

dP(&,t)

— = Ueg(t) =) P&, 1) (56)

Holland claimed that a genetic algorithm behaves approximately according to the
above equation. This claim is not true. Instead we have the surprising result:

Theorem 21. The Boltzmann distribution p(x,t) = e/ /z, with P(£,t) =
ZX‘Xézxg p(x,t) fulfills Holland’s equation (56).

Proof: Taking the derivative we easily obtain

PO _ e, 1) (£) — F(8) 67)
Let now x¢ define a marginal distribution. Then
dp(gat) _ dp(X§,t) . 1 g
ao w2 penred i)

= P(&t)(pe(t) — (t))

18

Thus the Boltzmann distribution with the annealing schedule B(t) = t fulfills
Holland’s equation. According to Holland’s analysis FF DA with this schedule should
be an almost optimal algorithm. The problem is to define in a precise manner what is
meant by an optimal algorithm. Holland has derived equation (56) from an information
theoretic analysis. We state the result as a conjecture:

Conjecture: Generating search points according to a Boltzmann distribution seems a
very good search strateqy for optimization.

9 A kingdom for approximating the Boltzmann distribution

With FDA we try to sample efficiently from a Boltzmann distribution. But also other
disciplines need to estimate or sample a distribution. The relation becomes clear if we
summarize the major tasks:

e to estimate and sample p(x) (density estimation)
e to estimate and sample N points with high p(x) (optimization)
e to estimate y given z, e.g to compute p(y|z) (probabilistic reasoning)

e to estimate the probability of y being true given z, e.g to compute p(y|z) in a
probabilistic logic setting

The difference between probabilistic reasoning and probabilistic logic is as follows:
probabilistic reasoning uses statistical dependencies between variables, whereas proba-
bilistic logic creates a graph from rules.

In this paper we have mainly dealt with optimization. In statistical physics there exist
some very old and almost forgotten algorithms to effectively calculate the Boltzmann
distribution if the energy function (EF = —f(x)) is known [25]. Thus a fascinating
interdisciplinary research is well on the way — bringing together such diverse fields as
population based optimization, probabilistic reasoning, and statistical physics. The core
of the theory is the same: the factorization of the distribution if the corresponding factor
graph is singly connected.

We will explain the approach of statistical physics in more detail. If the function is
given in an analytical form, why do we compute the Boltzmann distribution by sampling?
It is possible to compute an optimal Boltzmann distribution directly by minimizing the
Kullback-Leibler divergence. The minimization takes the parameters of the factorization
as variables to be determined. We will explain the approach with the simplest example.

9.1 The mean field approach

In the mean field approach one assumes that the distribution is given by the product
also used by UMDA

q(x) = [ai(=:) (58)
i1

19

First we compute

Z)Ing(x Z Z q1(z1 qu ;) 111(11 1 +Zln% x])]

X 1 T2,..,Tn Jj=2
—Z(h z)Ingy(z1) Y HQJ T +ZCI1 z1) Y H(h T Zlnq] ;)
mz, Ep j=2 mz, T 1—=2
=1 =1
n
:---:Z(QiIHQi+(1_qi)ln(l_qi))
i=1

For the derivation we have used an obvious recursion in n and the fact that ¢;(0) =
1 — g;. The Kullback-Leibler divergence of ¢(x) to a Boltzmann distribution can be
written as

DKL(QHP,B):Z (x)[Inq(x) — Bf(x) + In Zg]
1nzﬁ+z) Ing(x BZ

=InZg+ Z(Qi Ingi+(1—q)In(l —q)) —B-Wlg,-..,qn)
=1

W denotes the average fitness, seen as a function of q. A local minimum of the divergence

can be obtained by setting the derivatives to 0. We obtain:
q; ow

D" (q |l ps)
9q; _lnl—qz'_ﬁaqz' =0 (59)

This has the solution 1

Gi= (60)
1+e "%

Equations (60) are called the Mean Field Equations in statistical physics[10]. They
can be solved numerically if the expression of W is given. We have computed in [21]
the analytical expression of W if the analytical expression of f is given. W is simply
obtained by an exchange of variables. Thus, if f(x) = >, ajz; + >, 47 @ij Tz then we
have W (q) = >_; aiigi + ;25 aijgiqj. We will discuss two examples.

9.1.1 Linear Fitness

For the linear function Linear =), a;x; equation (60) has the closed solution

1

“E Taeen

The solutions are identical to the exact marginal distributions of a Boltzmann distribu-
tion (see in equation (35). Thus for linear functions we have DXL = 0.

20

9.1.2 Quadratic Fitness

Let A = (a;;) be a symmetric matrix. Consider the quadratic function f(x) =
> % + % Z(ij)ﬂ;éj a;jz;xj. Here we have W(q) =, aiiq; + % Z(ij),i# a;ijq;q;- From
equation (60) we obtain
_ 1

1+ exp[—B(aii + 32 aij - ¢5)]

qi (61)

This is a system of nonlinear equations in the parameters ¢;. There is no closed solution,
the equations have to be iterated to find a numerical solution. It is difficult to precisely
describe the relation of solutions of equation (60) to solutions of the given optimization
problem. We can informally derive our next conjecture from equation (59). For large 3
the solutions have to fulfill 9W/0dq; =~ 0. The conjecture is difficult to specify precisely.
Therefore we state informally:

Conjecture: For 3 large enough, the solutions of equation (61) are given by either
g <e€orqg >1—e€. € can be made as small as wanted by increasing B. If we set € =0
then the solutions are local optima of the function f(x) concerning 1-bit changes.

Proof: Let g/ be a solution of (61). We can assume ¢ < € Vi. Then from equation (61)
it follows with a large enough g that

Vi: ai+ Zaijq;f <0 (62)
J#i

Let us assume that we have another solution r* where just one r; is different from qf,
thus r; > 1 — €. Then from equation (61) it follows

arp + Zakﬂ'; = Qi + Zaqu;‘ >0
J#k J#k
But this is a contradiction to our assumption because of equation (62). O

At least for quadratic functions the mean field approach seems to be as powerful
as the UMDA algorithm. In theory, the mean field approach needs just one step. For
optimization one chooses just a very large 5. But in practice, the quality of the solutions
depend on the stability of the numerical procedure. This is shown in figure 2.

The function to be optimized was a quadratic function of 100 variables on a 10 x 10
grid where the coefficients have been drawn randomly. The estimate of a local optimum
has been determined by a simple procedure: if p; < 0.5 set p; = 0, and if p; > 0.5
set p; = 1. The best local optima are obtained for § = 3. Increasing § further gives
worse results. Thus also the mean field approach seem to profit from a good annealing
schedule.

21

Fitness

10 T

. Fitness Eeached ;

0 2 4 6 8 10
B

Figure 2: Maximum fitness generated after solving equation (61)

9.2 Advanced mean field methods

For many difficult practical problems, the mean field solutions are just local optima,
sometimes far away from the global optima. It is now obvious how to obtain better ap-
proximations — use marginal distributions of higher order. We take the quadratic fitness
function f(x) =3, ; a;;z;z; as example. In general the Boltzmann distribution for this
function cannot be exactly factorized using bivariate distributions only. Nevertheless in
statistical physics the ansatz has been made

n

o0~ - T[W) [946w (63)
Y

=1

Now one proceeds as in the mean field approach. The parameters of ¥;; are determined
by minimizing the Kullback-Leibler divergence to the Boltzmann distribution. The equa-
tions are really difficult. But several local iteration algorithms have been proposed. For
the quadratic fitness function we start the iteration with

\Ifz](xz,$]) — eﬁaij:rimj (64)

For singly connected graphs the belief propagation algorithm of Pearl[26] is the most
elegant and efficient iteration algorithm. The following important theorem has been
proven [25]:

Theorem 22. If the graph structure defined by ¥;; is singly connected then there exist
solutions with DXY = 0. Furthermore, the solutions can be obtained by using the belief
propagation algorithm of Pearl [26].

The theorem states that for singly connected graphs the solutions are exact Boltz-
mann distributions. A singly connected graph obviously fulfills the running intersection
property. Thus in these cases both FDA and advanced mean field methods give the same
result. The theorem is valid for any graph fulfilling the running intersection property.
Pearl’s algorithm has to be modified accordingly (see [16]).

22

If the graph contains cycles, then Pearl’s algorithm does not necessarily converge.
The extension of Pearl’s algorithm to general 2-d graphs is an area of active research.
The interested reader is referred to [25].

9.3 Approximation of the distribution — structure vs. data

If the graph structure defined by the function fulfills the running intersection property
then FDA as well as advanced mean field methods have for large § attractors nearby
the global optima of the function. In principle, one can use a very large 8, apply Pearl’s
algorithm and obtain a distribution which generates the optima with high probability.

Thus we can obtain the optima in one step. But there exists another method, which
is for such problems even more effective — it is an extension of dynamic programming.
Thus the optimization problems left are those which do not allow an exact factorization
with a polynomial number of parameters.

There are at least two methods to compute an approximate distribution for the
above problems. In the first approach the structure of the function is used to compute
an approximate factorization. This method is used by FDA and advanced mean field
methods. FDA uses a population to determine the parameters, the advanced mean field
methods use generalization of Pearl’s belief propagation to determine the parameters.

In the second approach we determine the structure from data. Points with high
fitness are collected. From the empirical data a Bayesian network is computed. This
is called learning in Bayesian networks [9]. Early examples of this method are EBNA
(3, 14], LFDA [20], and BOA [27].

In the next section we will use a combination of these two methods to solve the graph
bipartioning problem. We will consider only those edges as candidates for the Bayesian
network which are contained in the given graph.

10 The graph bipartitioning problem

The graph bipartitioning is defined as follows: Given an undirected graph (V, FE) with
an even number of nodes |V| = n, find the partition of the nodes in equal sized sets,
such that the cut size is minimal. The cut size is defined as the number of edges between
the two partitions A and B:

Ar%icnv{cs(A,B) | |A|=|B|} with
7= (65)
cs(A,B) := [{(verw) € E‘(v ceANweEB)V(veEBAwEA)}

In this paper we concentrate on graph bipartitioning. The general M-partitioning
problem has been investigated with parallel genetic algorithms in [33].

10.1 UMDA for the bipartioning problem

There is a simple mapping from binary vectors to solutions of the graph bipartitioning
problem: the value of z; is 1 if node 7+ € A and z; = 0 if node ¢ € B. A graph

23

bipartitioning problem with n nodes can be represented using an individual with n bits.
But there are two problems with this simple approach:

e Most bit strings do not correspond to feasible solutions, we need to have exactly
n/> bits with value 0.

e Fitness remains constant when all bits are inverted.

We try to solve both problems by using a local search procedures. We start with the
second problem. We break the symmetry with the following procedure. We define the
best solution in our population as the reference point. Inversion of bits leave the fitness
unchanged. Thus we compute the Hamming distance to the reference solution for the
original string and the inverted string. We put the string with the smallest Hamming
distance into the population.

The calculation of the cut size can be done in the bit string representation by

cs(x) = Z zi + 2 — 2% (66)
i+ j)EE

Obviously, this is a quadratic function.

10.2 The Kernighan-Lin algorithm

The Kernighan-Lin algorithm [11] is an efficient heuristic to find a solution for the graph
bipartitioning problem. It uses several passes. In every pass, the current solution is
improved by swapping pairs of nodes to get a new solution. This is iterated until a pass
does not give an improvement.

In [4] a similar algorithm was introduced that reduced the complexity per pass from
O(IV|?) to O(|E|). A conceptional difference is that in every step a single node may
move into the other partition. This violates the constraint |A|=n/2. Therefore in the
next step we will choose an element from the larger partition to move to the smaller
partition.

The speed gain is possible by using an additional data structure. This data structure
makes it possible to calculate the edge with maximum gain in constant time. This is
done by storing for every possible gain a linked list of corresponding nodes. This list can
be updated in time O(|E|) [4]. The gain g, is the increase (or decrease) in the cut size
when node ¢ changes from one set to the other, so

veA: v ::|{wEB‘(v<—>w)EE}|—|{w6A‘(v<—>w)EE}| (67)

and analogously for v € B.

By considering single nodes and not pairs, it is possible to start with non feasible
solutions. In the beginning, only nodes from the larger partition are considered for
movement, until both partitions are equal. The details can be seen in algorithm 4. The
algorithm has an unknown number of cycles (the outer while loop) until it converges.
In every cycle, two lists of candidate edges Q4 and @Qp are maintained, with initially

24

Q4 = A and Qp = B. Then the gains are calculated. In the inner loop, while there are
still elements in Q 4 or @B, the element with highest gain is chosen from the larger of the
candidate sets. The set name is stored in M;, the element in ¢;. Then it is removed from
the candidate set and the gains are updated. In f; we mark if we have a bipartitioning
state.

Finally, of the sequence of moves ¢; till ¢y, one sequence which has the bipartitioning
property and lowest cut size is chosen and those moves are performed.

Algorithm 4: Kernighan-Lin with single swaps

1 Start with an arbitrary partition A, B.

2 do{

3 Qs < A, Qp < B, i < 1, initialize the gain lists g..

4 do {

5 if |Qa| > |QB|: M; < A, choose ¢; € Q4 with max. g,

6 if |Qa| < |@B|: M; < B, choose ¢; € Qp with max. g,

7 if |Qa| =|Q@p|: Choose ¢; from Q@4 UQp with max. g, set M;
correspondingly to A or B

8 Qum, < Qu, \{c}; i < i+ 1; §i < gc,; update the gain lists.

9 if |QA|:|QB|: fi<1l else: f; <0

10 } while (Q4 UQp # 0)

11 Select k € {1,...,|V|}, such that f; =1 and Zle ¢; maximal.
12 Move the elements {ci,...,c;} to the other set.

13} while (something was swapped)

On top of Kernighan-Lin we can put UMDA to get algorithm 5. Note that UMDA
does not use the connection structure of the graph to be partitioned.

Algorithm 5: UMDA for graph bipartitioning

1 Generate a random population with N individuals. ¢ < 0.

2 do{

3 Run algorithm 4 for every individual.

4 Select N < N points. Let X* be the best individual.

5 For all X: When §(X*, X%) > njfp: ¥ «< -7,

6 Calculate bit frequencies p;(z;,t) from the selected points.

7 Generate new points according to p(z,t + 1) =[], pi(zi, t).
8 t<=t+1.

9} until (stopping criterion reached)

The graph bipartitioning problem can be formulated as a quadratic optimization
problem (see equation (66)). Therefore another possibility is to solve the mean field
equations (61). We are currently evaluating this approach.

25

10.3 Using LFDA for the graph bipartitioning

Because of the graph structure of the problem, we will use the following modification
of LFDA. From equation (66) it follows that only variables that are connected in F
give rise to a nonlinear term z;z;. Thus we consider for our Bayesian network BN only
those edges which are also edges of the given the graph. This modification makes the
implementation a hybrid between FDA and LFDA. While learning, the list of allowed
edges is initialized from the list of edges E instead of the full network. This leads to

algorithm 6.

Algorithm 6: LFDA for graph bipartitioning

1 Let E be the edges of the graph from the problem definition. Generate
a random starting population of N individuals. ¢ <= 0.
2 do{
2 Apply algorithm 4 (Kernighan-Lin with single swaps) to every in-
dividual.
4 Select N < N points. Let X* be the best individual.
5 For all : When 6(X*, X%) > nfp: ¥ < —X".
6 F < {(X; = X;)|(X; < X;) € E}, admissible edges must be con-
tained in the original graph.
BN« 0.
do {
Choose (X; = X;) € F, such that MDL, is maximally reduced.
10 BN<BNU(X; — X;).
11 Remove (X; — X;) and (X; = X;) from F' as well as all edges
that could introduce a cycle or more than k.« parents.
12 } while (there is an edge in F' that reduces BIC,,)
18 Calculate a factorization from the graph).
14 Calculate the conditional probabilities p(zp,|z;,t) from the se-
lected points.
15 Generate new points according to p(z,t + 1) = nglp(xbi |Ze,, t).
16 t<=t+1.
17} until (stopping criterion reached)

In LFDA we use a measure which is a tradeoff between goodness of fit and complex-
ity of the model. It has been first proposed by Schwarz [31] as Bayesian Information
Criterion BIC. Let M = |D| denote the size of the data set. Then

BIC, = —M - H(B, D) — aPA - logs (M)

(68)

PA = EiQ‘p“i‘ gives the total number of probabilities to compute. pa; denotes the

26

parents of node i in the Bayesian network BN. H(B, D) is defined by

H(B,D) = =30 3 3 L), D0 (69

=1 pa; x; m(paz)

where m(z;,pa;) denotes the number of occurrences of z; given configuration pa;.
m(pa;) = Y, m(wipa;). If pa; = 0, then m(z;,0) is set to the number of occur-
rences of z; in D. Schwartz proposed a = 0.5 For a discussion of this and other measures
the reader is referred to [20].

11 Benchmark results

There exist at least two other implementations using Bayesian networks to solve the
graph bipartitioning problem [28, 29]. But both papers are proof of concepts only. For
the test two easy problems have been used. The maximum number of vertices was
144. We decided to test the algorithm on state-of-the-art benchmarks defined by the
community (ftp://dimacs.rutgers.edu/pub/dsj/partition/).

In [18], the best results so far for a benchmark suite have been published. The authors
used a genetic algorithm extended by the Kernighan-Lin local search. Furthermore they
compared the results with several other algorithms, among them a multi-start and an
iterated Kernighan-Lin. Most difficult was the class of randomly generated graphs Gn.p.
In this class, for a given n and p a random graph was generated having n edges and
edges with a probability of p. For several values of n and p an instance was generated
and made available for download.

[Algo. [N] Avg | o [FE[Mx] Algo. || N| Avg | o | FE|Mx]|

G500.005 (49) G500.01 (218)
DG 52.0 | 0.26 | 15k 0 DG 2193 1 0.84| 9k)
IKL 55.8 | 2.11 | 26k 0 IKL 229.7 |1 5.21 | 19k 0

MA-GX || 40| 49.1|0.37 | 50k | 29 || MA-GX || 40 218.1 | 0.51 | 38k | 28
M50 40 | 50.9 | 0.40 | 28k 1 M200 40 | 218.0 [0.00 | 19k | 30

Kim | 50| 50.4 26k Kim 50 | 218.0 29k
UMDA || 40 | 49.4 | 0.57 | 34k | 18 || UMDA || 100 | 218.0 | 0.0 | 2k | 30
G500.02 (626) G500.04 (1744)
DG 6278 [145] 6k| 8| DG 17471 (212 3k| 3
IKL 638.8 | 4.26 | 13k | 0| IKL 1763.8 | 8.67 | 7.0k | 0
MA-GX || 40 | 6275 | 1.14 | 25k | 6 || MA-GX || 40| 17454 | 1.50 | 13k | 15
3| M50 40 | 1745.3 | 1.54 | 7.8k | 12

M50 40 | 626.7 | 0.71 | 14k | 1
Kim 50 | 626.9 29k Kim 50 | 1745.6 32k
UMDA || 40 | 626.0 | 0.18 | 6k | 29| UMDA 40 | 1744.0 [0.00 | 2k | 30

Table 4: Results for graphs with 500 variables. N is the population size, Avg the average
cut size, o the standard deviation, FE the number of evaluations and Mx counts
how often the maximum was found in 30 runs.

27

[Algo. | N Avg | o [FE[Mx] Algo. | N| Avg | o | FE|Mx]

G1000.0025 (93) G1000.05 (445)
DG 1014 [145[11k]| 0] DG 4599 [2.23 k] 0
IKL 99.5 | 2.87 | 10k | 0| IKL 452.9 | 4.09 k| 0
MA-GX || 40| 945 |1.33|41k| 10| MA-GX | 40| 4477|099 | 32| 2
M100 || 40| 963 |1.03|24k| 0| MI150 || 40| 4489 | 148 | 14k | 0
Kim 50| 96.2 28k Kim 50 | 4495 35k
UMDA || 40| 953|075 |40k| 1| UMDA || 40| 449.1 | 1.26 | 30k| 0
LFDA | 100| 94.8|0.70 |41k | 1| LFDA |[100| 447.8| 1.53 | 20k | 4

G1000.01 (1362) G1000.02 (3382)
DG 13781 [2.62| 4k| 0| DG 33975] 517 | 2.0k| 0
IKL 13708 | 4.66 | 4k | 2| IKL 3399.5 | 14.73 | 2.3k | 1
MA-GX || 40|1363.1|1.04|21k| 9| MA-GX | 40|3384.0| 049 |11.4k| 0
M150 || 40| 13646 |2.75| 8k | 7| MI150 || 40|3383.2| 081 | 44k | 6
Kim 50 | 1364.4 42k Kim 50 | 33845 40.1k
UMDA || 40| 13638 | 1.03 |19k | 1| UMDA | 100 | 3384.1 | 0.80 | 8.0k | 2
LFDA || 100 | 1362.7 | 0.70 | 21k | 13| LFDA |/ 100 | 3383.6 | 0.90 | 7.8k| 5

Table 5: Results for graphs with 1000 variables, see table 4 for the column descriptions.

The algorithm DG is a diff-greedy algorithm and IK L an iterated Kernighan-Lin
local search. We include two different memetic algorithms (MA-GX and Mx), all results
from [18]. There 10 different memetic algorithms were introduced. Four of these use
strong mutation, namely M50 to M200. The number is a parameter of the algorithm, the
mutation rate. Of these four the best result is shown for every problem. The worst result
was in almost all cases considerably worse, so the mutation rate is a critical parameter
for this algorithm. From the other algorithms of the paper, MA-GX was the best one.
Kim is the algorithm from [12], standard deviation was not published in this paper.

Shown are the best known solutions in parentheses after the problem name, the
population size N for population based algorithms, the average best cut size for 30 runs,
the standard deviation of the average, the average number of function evaluations and
how often the best known solution was found. In bold face are the fitness values of the
best algorithm and of those algorithms where the difference to the best is within one
standard deviation.

A stochastic algorithm gets better performance by running for a longer time. To
be able to compare different algorithms, often the run time in seconds is used. The
algorithms in [18] had 60 seconds to optimize the problems with 500 bits and 120 seconds
for those with 1000 bits. It turned out that the diff-greedy and the iterated Kernighan-
Lin performed worse when given the same amount of CPU time.

As the CPU time depends also on the hardware used, we have used a different
criterion to compare the results to UMDA and LFDA, namely the number of function
evaluations. One function evaluations corresponds to a complete run of the Kernighan-
Lin algorithm. This is fair, as both memetic algorithms from [18] and the one from [12]
use the same principle, they only differ in the method of recombination. As a comparison:
UMDA took for the 500 bit problems 100-200 seconds and for the 1000 bit problems

28

roughly 500 seconds, LFDA needed 1000 seconds for the 1000 bit problems. UMDA and
LFDA were stopped when a given number of function evaluations was reached. They
were never given more evaluations than MA-GX.

For the 500 bit problems all population based algorithms give similar results. The
simple iterated algorithms are considerably worse than the memetic ones and UMDA
and LFDA. But the size of these problems seems to be too small to show a big difference
between the algorithms. UMDA is only in one case not the best, but still within one
standard deviation. In two cases UMDA gave the best results with the same number of
function evaluations. LFDA is not needed for these problems.

The problems with 1000 bits are more difficult. Both simple search algorithms
(DG,IK L) get considerably worse. Algorithm K IM of [12] performs worst in the class of
the sophisticated population search methods. LFDA and MA-GX gave the best results
and differ only slightly. But UMDA has good results in two cases as well.

LFDA has an overall good performance with bigger computational effort. In [18] the
authors mention the importance of interactions: ”‘Gene interaction in a given repre-
sentation can be expressed by a dependency graph... We think that the structure of the
dependency graph may have a large impact on the fitness landscape.”’ But they do not
use this property in their algorithms. The property has been exploited by LFDA.

To see the number of edges that were used in a typical LFDA run, consider table 6.
For the G1000.01 problem edges were chosen with a probability of .01. This resulted
in a graph with 5064 edges. The table shows the actual number of edges learned by
the LFDA in a typical run. The number of edges of the Bayesian network is much less
than in the given graph. As the population converges, less and less edges are needed to
describe the probability structure of the search population.

Gen 1 2 3 4 Y 6 71 8] 9110
Edges | 984 | 807 | 514 | 362 | 250 | 169 | 128 | 95 | 72 | 56

Table 6: Number of edges of BN out of 5064 used for the G1000.01 problem.

Both UMDA and LFDA were not adopted for the problem, only the local search
was added. The local search is essential for all population based search methods. The
algorithms of [18] and [12] were specifically written for the graph bipartitioning problem.
The performance of UMDA in conjunction with local optimization using Kernighan-Lin
is surprisingly good.

12 Conclusion

We have presented a theory of population based optimization methods using search dis-
tributions. We have proven convergence to the global optima for the Factorized Distribu-
tion Algorithm FDA if the search distribution is a Boltzmann distribution. Convergence
has been defined in a strong sense — the limit distribution of FDA consists of the distri-
bution of the global optima. FDA converges in polynomial time if the search distribution

29

can be factored so that the number of parameters used is polynomially bounded in .
A general distribution has 2" parameters.

If FDA is used without a Bayesian hyper parameter, then for convergence to the
limit distribution the population has to be large enough. The problem of estimating
this critical population size can be reduced by using a Bayesian hyper parameter. We
have computed upper bounds for Bayesian hyper parameters. They are derived from the
constraint that the attractors generate the optima with high probability (e.g P} > 0.3).
Furthermore we have presented an adaptive annealing schedule for Boltzmann selection.

Thus the mathematical theory is on a solid foundation for optimization problems
where the Boltzmann distribution can be exactly factorized using a polynomial number
of parameters. The research questions left are connected to finding good approximations
for the Boltzmann distribution in the general case. We have shown the relation of our
approach to methods used in probabilistic reasoning and statistical physics.

The theory presented here can be extended to general dynamic systems. Whereas in
optimization problems we can restrict the search distribution to a Boltzmann distribu-
tion, we have to deal in dynamic systems with general time varying distributions.

References

[1] Th. Béack and H.-P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. FEvolutionary Computation, 1:1-24, 1993.

[2] G.F. Cooper and E.A. Herskovits. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309-347, 1992.

[3] R. Etxeberria and P. Larranaga. Global optimization using Bayesian networks. In
A.A.O. Rodriguez, M.R.S. Ortiz, and R.S. Hermida, editors, Proc. of the Second
Symposium on Artificial Intelligence Adaptive Systems, pages 332-339, ICIMAF,
La Habana, Cuba, 1999.

[4] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving net-
work partitions. In Proceedings of the Nineteenth ACM/IEEE Design Automation
Conference, pages 175-181, IEEE Computer Society PressPiscataway, New Jersey,
1982.

[5] H. Geiringer. On the probability theory of linkage in Mendelian heredity. Annals
of Math. Stat., 15:25-57, 1944.

[6] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, 1989.

[7] D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used in
genetic algorithms. In G. Rawlins, editor, Foundations of Genetic Algorithms, pages
69-93, Morgan Kaufmann, San Mateo, 1991.

30

8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[22]

J.H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan
Press, Ann Arbor, 1975/1992.

M.I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambrigde, 1999.

M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul. An introduction to
variational methods for graphical models. In Jordan [9], pages 105-162.

B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 2:291-307, 1970.

Y.-H. Kim and B.-R. Moon. A hybrid genetic search for graph partitioning based on
lock gain. In Proceedings of the Genetic and Evolutionary Computation Conference
GECCO-2000, pages 167-174, Morgan Kaufmann, San Francisco, 2000.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, 1983.

P. Larranaga, R. Etxeberria, J.A. Lozano, and J.M. Pena. Combinatorial opti-
mization by learning and simulation of Bayesian networks. In C. Boutilier and
M. Goldszmidt, editors, Procedings of the 16th Conference on Uncertainty in Arti-
ficial Intelligence, pages 343-352, Morgan Kaufmann, Stanford, 2000.

P. Larranaga and J.A. Lozano. Estimation of Distribution Algorithms: A New Tool
for Evolutionary Optimization. Kluwer Academic Press, Boston, 2001.

St. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

Th. Mahnig and H. Miihlenbein. A new adaptive Boltzmann selection schedule SDS.
In Proceedings of the 2001 Congress on Evolutionary Computation, pages 183-190.
IEEE Press, 2001.

P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms, and greedy
operators for graph bipartitioning. Evolutionary Computation, 8(1):61-91, 2000.

H. Miihlenbein. The equation for response to selection and its use for prediction.
Evolutionary Computation, 5(3):303-346, 1998.

H. Miihlenbein and Th. Mahnig. FDA - a scalable evolutionary algorithm for
the optimization of additively decomposed functions. Fwolutionary Computation,
7(4):353-376, 1999.

H. Miihlenbein and Th. Mahnig. Evolutionary algorithms: From recombination to
search distributions. In L. Kallel, B. Naudts, and A. Rogers, editors, Theoretical
Aspects of Evolutionary Computing, Natural Computing, pages 137-176, Berlin,
2000. Springer Verlag.

H. Miihlenbein and Th. Mahnig. Evolutionary computation and beyond. In Y. Ue-
saka, P. Kanerva, and H. Asoh, editors, Foundations of Real-World Intelligence,
pages 123-188. CSLI Publications, Stanford, California, 2001.

31

23]

[24]

[25]

[26]

[27]

28]

[34]

H. Miihlenbein and Th. Mahnig. Evolutionary computation and Wright’s equation.
Theoretical Computer Science, to be published, 2002.

H. Miihlenbein, Th. Mahnig, and A. Rodriguez Ochoa. Schemata, distributions and
graphical models in evolutionary optimization. Journal of Heuristics, 5(2):215-247,
1999.

M. Opper and D. Saad, editors. Advanced Mean Field Methods, MIT Press, Cam-
bridge, 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufman, San Mateo, 1988.

M. Pelikan, D.E. Goldberg, and E. Canti-Paz. BOA: The Bayesian Optimization
Algorithm. In Proceedings of the Genetic and Fvolutionary Computation Conference
GECCO-99, pages 525-532, Morgan Kaufmann, San Francisco, 1999.

M. Pelikan, D.E. Goldberg, and K.Sastry. Bayesian Optimization Algorithm, deci-
sion graphs, and Occam’s razor. In L. Spector and al., editors, Proceedings of the
Genetic and Evolutionary Computation Conference GECCQO-2001, pages 519-526,
San Morgan Kaufmann, Francisco, 2001.

J.M. Pena, J.A. Lozano, and P. Larranga. Benefits of data clustering in multimodal
function optimization via edas. In Estimation of Distribution Algorithms [15], pages
99-124.

A. Priigel-Bennet and J.L. Shapiro. An analysis of a genetic algorithm for simple
random Ising systems. Physica D, 104:75-114, 1997.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461—
464, 1978.

N.G. van Kampen. Stochastic Processes in Physiscs and Chemistry. Elsevier, Am-
sterdam, 1992.

G. von Laszewski and H. Miihlenbein. A parallel genetic algorithm for the graph
partitioning problem. In R. Maenner and H.-P. Schwefel, editors, Parallel Prob-
lem Solving from Nature, Lecture Notes in Computer Science 496, pages 165-169.
Springer-Verlag, 1991.

J. von Neumann. The general and logical theory of automata. In The world of
mathematics, pages 2070-2101. Simon and Schuster, New York, 1954.

32

