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Abstract

We perform a stochastic analysis of evolutionary algorithms. The analysis centers on the
question how to efficiently compute probabilities of promising alleles derived from evolving
populations under selection and how to use these probabilities to generate new points.
We shortly discuss the Univariate Marginal Distribution Algorithm (UMDA). It uses
univariate marginals to generate new search points. We extend UMDA to the Factorized
Distribution Algorithm (FDA) which uses a factorization of the Boltzmann distribution.
We describe a well known algorithm to compute a factorization based on junction trees. We
explain the sampling method of FDA and discuss the difference to Simulated Annealing.
We introduce mutation into the algorithm with the help of a Bayesian hyper parameter. We
show that FDA using Boltzmann selection fulfills an equation which Holland claimed to be
necessary for an almost “optimal” algorithm. We formulate FDA as a population dynamics
algorithm. We conclude with a short discussion about the interdisciplinary research to
approximate distributions, especially the Boltzmann distribution.

Keywords linkage equilibrium, marginal distributions, conditional probabilities, Wright’s
equation, Boltzmann distribution, factorization of distribution, Holland’s schema analysis,
population dynamics

1 Introduction

Any evolutionary algorithm using a population of points can be seen as a stochastic pro-
cess. There are at least three approaches to understand and analyze stochastic processes—
the microscopic view, the mesoscopic view, and the macroscopic view.

In the microscopic view the dynamic behavior of a population of objects is simulated.
In genetic algorithms, for instance, a set of points is generated. From this set promising



points (points with high fitness) are selected. These points are used as the ”parents” of
the next set. Each run is unique, therefore a mathematical analysis is almost impossible.

Let x be a vector (genotype) of size n, defining the configuration space. In the mesoscopic
view a probability distribution p(x,t) is introduced. From an initial distribution p(x,0)
a population (ensemble) is generated. Promising points are selected. The corresponding
distribution of the selected points p®(x,t) is estimated and then used to generate new
points. For binary variables the distribution p(x,t) has 2" — 1 free parameters. The
standard stochastic analysis is based on transition matrices M = (p(x|x’)) describing
the probability of a transition from configuration x to configuration x'. Even for small
n the size of the matrix is very large. Therefore we will approximate the distribution
p(x,t) by a small number of conditional distributions. With the schema theory (Holland
1992) also tried a mesoscopic analysis of genetic algorithms. We will show that schema
probabilities define nothing else than marginal distributions and their corresponding
subspaces. Using conditional marginal distributions will be the key to the mesoscopic
analysis. In the macroscopic view one is interested in macroscopic variables, like the

average fitness E[f(x)](t) = Y, p(x,t) f(x).

In this paper we concentrate on the mesoscopic view. First we analyze an evolutionary
algorithm using univariate marginal distributions (UMDA) to generate a population
instead of recombination and mutation of strings as it is done by genetic algorithms.
UMDA might fail to optimize functions with strongly correlated variables. Therefore we
extend UMDA to a population based search algorithm using a general search distribution.
In our case we will use the Boltzmann distribution. This algorithm, called BEDA, converges
to the set of global optima. Convergence is here defined in the strong sense of numerical
analysis as approaching a stable equilibrium distribution peq(x) which concentrates around
the optima. Without mutation the equilibrium distribution is a point distribution, where
the points are given by the optima. From BEDA we derive our main algorithm, called the
Factorized Distribution Algorithm FDA. It is a mathematical extension of UMDA, and
is based on a factorization of the distribution. We show that BEDA fulfills a differential
equation Holland (Holland 1992) postulated for a good optimization algorithm. Then we
describe the junction tree algorithm which can be used to compute a factorization. We
discuss mutation and the adaptive annealing schedule SDS.

FDA can be formulated as a population dynamics model. Different species try to solve
a common problem (the optimization of a common fitness function) by cooperation. We
conclude the paper by surveying the ongoing interdisciplinary research to approximate dis-
tributions. It combines statistics (graphical models), artificial intelligence (belief propaga-
tion), statistical physics (advanced mean-field methods) and probabilistic logic (maximum
entropy).

2 The Univariate Marginal Distribution Algorithm UMDA

Let x = (z1,...,2n) denote a vector, z; € A; = {0,1,2,...,m;}. We use the following
conventions. Capital letters X; denote the names of variables, lower case letters z;
assignments. The distinction between the name of a variable and an assignment is essential
for the definition of marginal distributions. When there cannot be a confusion between
name or assignment, we will use lower case letters and abbreviations. For notational



simplicity we will assume binary variables z; € {0,1}. Important definitions will be given
for the general case.

Let a function f : X — IR»0 be given. We consider the optimization problem
Xopt = argmax f(x) (1)

Definition 1 Let 0 < p(x,t) < 1 denote the probability of x in the population at gen-
eration t. Then pi(zk,t) = 3_, x,_,, P(x,t) defines the univariate marginal distributions
of variable X;. Let x¢ be a sub-vector of x. Then the marginal distribution is defined
as p(xe,t) = Zx,Xesz p(x,t) Let y,z be disjoint sub-vectors of x. Then conditional
probabilities are defined as p(y|z) = p(y,z)/p(z) for p(z) > 0.

Remark: Marginal distributions and the schema theory

Marginal distributions are equivalent to schema probabilities introduced in (Holland 1992).
We just give an example for n = 5. Let & = (1,0, %,*,*) define a schema. Then the
probability of the instances of schema ¢ in the population P(t) is by definition equal to
the marginal distribution p(X; = 1, X> = 0,¢). Thus Holland’s schema analysis is nothing
else than a mesoscopic analysis in the space of marginal distributions. We prefer to use
the notation common in probability theory. In fact, one of the main reasons that schema
theory did not come very far is the imprecise terminology. In our mesoscopic analysis
conditional probabilities play an essential role. But the concept of conditional schema
probabilities has not yet entered the traditional schema theory.

Note that >°, A, pi(zk,t) = 1. This means that the univariate marginal distributions
are not independent. For notational simplicity we will consider p;(0) to be the dependent
parameter, which can be eliminated, if appropriate. We write p;(zy) if just one generation
is discussed. For the binary case (z; € {0,1}) p(x,t) is defined by 2" parameters.

Genetic algorithms are defined on a microscopic level. Given two strings, a new point is
generated by recombination/crossover. A stochastic analysis of a genetic algorithm requires
the computation of a recurrence equation

Pt +1) = 3 plxlx, p(x', 1) (2)

Here p(x|x’,t) denotes the probability for a transition from x’ to x at generation
t. Vose (Vose 1999) has derived such an equation for the Simple Genetic Algorithm
with proportionate selection, crossover, and mutation. The computation of the crossover
probabilities are especially difficult. Because crossover operates on two arbitrary strings x
and y of the selected population, one has to use the joint distribution p(x;y) in equation
(2). But even for the binary case with mutation and selection only, the transfer matrix
p(x|x’) is of size 2" x 2". It is extremely difficult to analyze the distribution using this
general equation.

We proceed further. Equation (2) is not the end result of a mesoscopic analysis, but just
the beginning. We will concentrate on distributions which are defined by a small number of
parameters or can be approximated by distributions by a small set of parameters. Because
we treat the marginal distributions as deterministic variables, the mesoscopic analysis is
valid for infinite populations. Fluctuations arising because of finite populations can be



investigated in principle, but it is extremely difficult. Because of the sampling theory in
statistics our analysis can be seen as the limit case of large finite populations when the
size goes to infinity.

We first consider the simplest approximation. This approximation has been used for a long
time in population genetics.

Definition 2 Robbins’ proportions are defined by the distribution

n

mp(,1) = [ [ p(X: = :,1) (3)

i=1

A population in Robbins’ proportions is called to be in linkage equilibrium in population
genetics.

Instead of performing recombination a number of times in order to converge to linkage
equilibrium, one can achieve this in one step by gene pool recombination (Miithlenbein and
Voigt 1996). In gene pool recombination a new string is computed by randomly taking a
gene for each locus from the distribution of the selected parents. This means that gene z;
occurs with probability p°(z;) in the next population. p°(x;) is the distribution of z; in
the selected parents. Thus new strings x are generated according to the distribution

p(x,t+1)= pr(zi,t) (4)

One can simplify the algorithm further by directly computing the univariate marginal
frequencies from the data. Then equation (4) can be used to generate new strings. Equation
(4) has been often used as an approximation. In physics it is called the mean field approach
(Opper and Saad 2001). We call our algorithm the Univariate Marginal Distribution
Algorithm (UMDA).

Algorithm 1: UMDA

1t < 1. Generate N > 0 individuals randomly.

2 do {

3 Select M < N individuals according to a selection method. Compute
the sample marginal frequencies p; (zi,t) of the selected set.

4 Generate N new points according to the distribution p(x,t + 1) =
H?:l p? (zi7 t)'

5 t<=t+1

6 } until Termination criterion fulfilled.

Remark: UMDA uses a finite population. Thus an exact theoretical analysis of UMDA
has to consider the stochastic fluctuations introduced by finite populations. This is very
difficult. We therefore assume an infinite population for the analysis. This assumption can
be justified, because the probabilities of the infinite population can be seen as the ezpected
value of the probabilities for finite population. This was also observed in (Vose 1999)



Let v = >7_, (m; +1). UMDA formally depends on v parameters, the marginal distribu-

tions p;(zr). We now consider the average E[f(x)] = Y _ p(x,t)f(x) as a function which
depends on p;(zy). To emphasize this dependency we write (in accordance with Wright)

W(p1(z1),p1(22), .., pn(Tm,)) == E[f(x)] (5)
Definition 3 Fitness proportionate selection changes the frequencies according to

P (x,t) = p(x,t)%) (6)

~

A detailed mathematical analysis of UMDA can be found in (Mihlenbein 1997,
Miihlenbein and Mahnig 2000). For notational simplicity we assume z; € {0,1}. Let W (t)
denote the average fitness as a function of the independent variables p; = p(X; = 1) only.
Then the following theorem is valid:

Theorem 4 (Wright’s Equation (Wright 1932)) For infinite populations and pro-
portionate selection UMDAchanges the gene frequencies as follows:

5174

pit +1) = pi(t) +pi(£)(1 — pi(t”%) (7)

The stable attractors of equation (7) are at the corners of the unit cube, i.e p; €
{0,1} i =1,...,n. In the interior there are only saddle points or local minima where
grad W (p)) = 0. The attractors are local mazima of f(x) according to one bit changes.
Thus UMDA tries to solve the continuous optimization problem argmax{W (p)} in the
unit cube by gradient ascent. The average fitness never decreases

Remark: Equation (7) can easily be extended to include mutation (Mihlenbein and
Mahnig 2002a; Miihlenbein and Mahnig 2002b).

Wright’s equation consists of n parameters. Any application needs the the average fitness
W. This requires the summation over all 2" possible configurations!

But if f(x) is given in a normalized form, the computation of W is very easy, one has only
to exchange z; with p; (Miihlenbein and Mahnig 2000). We just give an example

f(X) = ao-+ Z xr; + Z aijr;xj + Z AijpTiTj T (8)
i ij

.5,k

W(p) ao+ Y i+ Y aipip; + Y GijkpipiPk 9)
i ¥

i3,k

We will now apply Wright’s equation for the analysis of a very specific optimization
problem.

Example: Needle-Trap function

fx) =in+an(1—1‘i) (10)



This function is identical to OneMax = ) x; with the exception of the string =z =
(0,...,0). For this string the function values is a. For a > n this string is the global
maximum. But this maximum is surrounded by strings with the lowest fitness. In contrast,
the second maximum is surrounded by strings of high fitness. One expects that evolution
is driven to the second maximum.

For this function we compute
W(pi,...,pn) = > _pi+a]](1-p) (11)
i=1 i=1

In order to determine the attractor of Wright’s equation starting with an unbiased random
configuration (p; = 0.5,5 =1,..,n), we compute the gradient of W at this point. We have

aW(p17"7pn) .
AN vt Bt B AR, T 1—1p:
ow(1/2,.,1/2) a (L nt
Opi - 2

The sign of the derivative of w gives the direction p; moves. We obtain the result p; — 1
for a < 2" and p; — 0 for @ > 2"~'. For a = 2"~ we have an unstable fix-point
at p; = 0.5. Thus even the infinite population model converges to the trap, if the fitness
advantage of the needle is not large enough. For finite populations we will observe with high
probability convergence to 1, if the population does not include the string x = (0,...,0)
in a certain fraction. If the size of the population is exponential (N = C-2")) with C > 1
then the finite population might also converge to the optimum string.

In this artificial example the difference between the result for infinite population and for
finite populations is extremely large.

3 The Factorized Distribution Algorithm FDA

The simple product distribution of UMDA cannot capture dependencies between variables.
When the detection of the dependencies is necessary to find the global optimum, UMDA
and simple genetic algorithms fail. We need a more complex distribution to reach this
goal. A good candidate for optimization using a search distribution is the Boltzmann
distribution.

Definition 5 For 3 > 0 define the Boltzmann distribution of a function f(z) as
B (@) B @)

pﬁ(l‘) = zy BT W) = Zf(,B) (12)

where Z;(B) is the partition function. To simplify the notation 8 and/or f can be omitted.

The Boltzmann distribution is usually defined as e‘$/2. The term g(z) is called
the energy and T' = 1/8 the temperature. The Boltzmann distribution is suited for



optimization because it concentrates with increasing (3 around the global optima of the
function. In theory, if it were possible to sample efficiently from this distribution for
arbitrary 3, optimization would be an easy task.

3.1 Boltzmann selection

Our proposed algorithm incrementally computes the Boltzmann distribution by using
Boltzmann selection.

Definition 6 Given a distribution p and a selection parameter ASB, Boltzmann selec-
tion calculates the distribution of the selected points according to

p(x)eABf(w)

p’(z) = W (13)

Algorithm 2: BEDA — Boltzmann Estimated Distribution Algorithm

1t < 1. Generate N points according to the uniform distribution p(z, 0)

with 3(0) = 0.
2 do {
3 With a given AB(t) > 0, let
AB(t) f ()
(e, t) = e .
Zy p(y’ t)eAﬁ(t)f(y)
4 Generate N new points according to the distribution p(z,t +1) =
p°(z,t).

5 t<=t+1.
6 } until (stopping criterion reached)

We can now define the BEDA (Boltzmann Estimated Distribution Algorithm). BEDA is
a conceptional algorithm, because the calculation of the distribution requires a sum over
exponentially many terms. It can easily be proven that BEDA converges to the set of all
global optima (Miihlenbein and Mahnig 2002c).

We next transform BEDA into a practical algorithm. This means to reduce the number
of parameters of the distribution and to compute an adaptive schedule for 5.

3.2 Factorization of the distribution

In this section we describe a method for computing a factorization of the probability, given
an additive decomposition of the function:

Definition 7 Let s1,...,sm be index sets, s; C {1,...,n}. Let f; be functions depending
only on the variables x; with j € s;. Then

IEEDIIACH (14



is an additive decomposition of the fitness function f.

We also need the following definitions

Definition 8 Given si,...,Sm, we define for i =1,...,m the sets di, b; and ¢;:
d; .= U S5, b; := s; \ difl, ¢ =8 Nd;—1 (15)
j=1
We set do = 0.

In the theory of decomposable graphs, d; are called histories, b; residuals and ¢; separators
(Lauritzen 1996). In (Miihlenbein, Mahnig, and Ochoa 1999) we have proven the following
theorem.

Theorem 9 (Factorization Theorem) Let pg(x) be a Boltzmann distribution with

()= (16)
pa(x) = ——=
’ Z5(B)
and f(x)=Y" fs;(x) be an additive decomposition. If
bi 0 VYi=1,...,m; dm={z1,...,70}, (17)
Vi > 235 <i such that ¢; C s (18)
then
m 12, ps (%b;, %e;)
pa(x) = o op(xp|xe;) = TEr— 19
o) =T ot ) = Lt (19)

The constraint defined as equation (18) is called the running intersection property. It is a
severe assumption.

The factorization theorem can be seen as a mathematical complete schema theorem. It
tells which schemata are necessary to generate the whole distribution. The usual schema
theorems describe only the evolution of schemata, but not how the distribution can be
generated.

With the help of the factorization theorem, we can turn the conceptional algorithm BEDA
into FDA, the Factorized Distribution Algorithm. If the conditions of the factorization
theorem are fulfilled, the convergence proof of BEDA applies to FDA. In principle FDA
can be run with any selection scheme, but then the convergence proof is no longer valid.
Therfore we believe that Boltzmann selection is an essential part in using the FDA.

Because FDA uses finite samples of points to estimate the conditional probabilities,
convergence to the optimum will depend on the size of the samples (the population size).
FDA has experimentally proven to be very successful on a number of functions where
standard genetic algorithms fail to find the global optimum. In (Miihlenbein and Mahnig
1999) the scaling behavior for various test functions has been studied.



Algorithm 3: FDA — Factorized Distribution Algorithm

1 Calculate b; and ¢; from the decomposition of the function.

2 t < 1. Generate an initial population with N individuals from the
uniform distribution.

do {
Select M < N individuals using Boltzmann selection.

Estimate the conditional probabilities p(zs,|z.;,t) from the selected
points.

6 Generate new points according to p(z,t + 1) = [T/%, p(as; |zc;, t).
t<=t+1.
} until (stopping criterion reached)

S

4 Holland’s schema analysis and the Boltzmann
distribution

Before discussing FDA in more detail, we will turn to the very first analysis of genetic
algorithms made by Holland ((Holland 1992)). We will use here Holland s terminology.
(We remind the reader that from a schema ¢ in Holland’s terminology its probability P(,t)
is computed. This is just the marginal distribution p(x¢,t).) He derived the following
conjecture about a good population based search algorithm.

((Holland 1992),p.88): Each (schema) & represented in (the current population) B(t) should
increase (or decrease) in a rate proportional to its “observed” "usefulness” pic(t) — fi(t)
(average fitness of schema & minus average fitness of the population)

dP(¢,t)
dt

= (He(t) — p(1))P(&, 1) (20)

Holland claimed that the simple genetic algorithm behaves according to the above
equation. This is not true. Instead we have the surprising result:

Theorem 10 The Boltzmann distribution p(x,t) = e/ Z:(t) with P(£,t) =
ZXIX5=905 p(x,t) fulfills Holland’s equation (20).

Proof: Taking the derivative of the Boltzmann distribution we easily obtain

PO — i, 1)) 1) (1)

Let £ define a schema, x¢ the corresponding marginal distribution. Then

dP(£7 t) dp(x5, t) 1
= p(xﬁa t)
p(xe, t)

> pxt)(f(x) - F(#)

X|Xe=wz¢

P&, 1) (pie(t) — A(t))

dt dt



Thus the Boltzmann distribution with the fixed annealing schedule B(t) = ¢ fulfills
Holland’s equation. According to Holland’s analysis FDA with this schedule should be
an almost optimal algorithm!

We now discuss the evolution of marginal distributions for a specific function. The
probability distribution corresponding to this function cannot be factorized. FDA has
to use the full distribution.

Example: Normalized Trap function of size 3

f(x))=1-a,1—-2a,0,1) |z| =(0,1,2,3)

1
0.8
0.6
0.4 |
0.2 p(1,1,1) alpha=0.1 4
p(1,1,*) alpha=0.1 -------
. | p(l,*,*l) alphaI:O.l o
0

0 5 10 15 20 25 30
t

Figure 1 Evolution of marginal distributions (¢ = )

Figure 1 shows that p(1,1, 1) continuously increases, whereas p(1,1, %) and p(1, *) decrease
for one or even two generations. This result demonstrates that the evolution of single
schemata itself does not give much information about the optimization process. As
the factorization theorem shows, one has to consider all schemata which generate the
distribution.

5 Computing a factorization by junction trees

The approximation of the Boltzmann distribution and of distributions in general, con-
strained by a graphical model, is an important problem for different scientific disciplines.
For our application the following definition is sufficient.

Definition 11 A graphical model is a graph G, where two variables are connected by an
edge if they are correlated (appear together in one sub-function f;).

New methods to compute a factorization start from a graphical model G of the distribution
(Lauritzen 1996). In order to find the separators c¢; the algorithm computes cliqgues and
generates a junction tree J. There is lots of literature available about this method, e. g.
(Lauritzen 1996; Huang and Darwiche 1996; Meyer 1998; Jensen and Jensen 1994). A



junction tree is an undirected tree the nodes of which are clusters of variables. The clusters
satisty the junction property: For any two clusters a and b and any cluster h on the unique
path between a and b in the junction tree the relation

anbCh (22)

is true. The junction property is identical to the running intersection property defined
by equation (18). The edges between the clusters are labeled with the intersection of the
adjacent clusters; we call these labels separating sets or separators.

A junction tree is constructed from the graphical model by the following steps:

Triangulating the graph: A graph G is triangulated if it contains no chordless circle
with more than three vertices. An algorithm for adding the necessary edges is
described in (Huang and Darwiche 1996).

Finding the cliques: A clique C in a graph is a maximal totally connected subgraph.
That means that in C every node is connected to every other node in C, and there
is no clique C’ which contains C.

Generating the clusters: For each clique generate a cluster containing its variables.
This cluster will become a node of the junction tree J.

Building the junction tree: Find pairs of clusters with maximal intersection and con-
nect them. Label the edge with the separating set. Repeat this until the tree is
complete.

This results in a tree which fulfills the junction property. For example, a circle of bi-variate
marginals results in a circular graph G, which can be triangulated by connecting one node
with all other nodes. An example for n = 8 variables is shown in figure 2.
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Figure 2 Graphical model with triangulation and junction tree for a 1-D bi-variate
circle. The left figure shows the graph G; the dashed lines are inserted for the triangulation.
The cliques of the triangulated graph are the clusters of the junction tree .J (right figure,
white boxes). The separators are the shaded boxes.

The distribution is now factorized into the cliques given by the clusters of the junction
tree. However, the junction tree now contains non-local marginal distributions of order 3.



Figure 2 defines the following factorization

p(T1, T2, T3)p(T2, T3, T3)P(T3, Ta, T)P(T4, T5, T)p(Ts5, T, Ts)P(T6, T7, Ts)
p(2, xs)p(xs, v8)p(wa, x8)p(Ts, v8)p(ws, Ts)

p(x) = (23)

The approximation of the marginals of order 3 by the given marginals of order 2 will be
described next.

5.1 Approximation of distributions by marginals

For the circle the factorization consists of non-local marginals of order three. These
marginals can easily be estimated by FDA, but there exist also methods to compute
the non-local marginals by the given marginals of order two. This method is essential
if the factorization leads to large cliques. We just describe a method based on iterative
proportional fitting and the mazimum entropy principle.

Maximum entropy principle: Find the mazimal entropy distribution for p(x) which
satisfies the given marginals.

The maximum entropy principle has a long history in physics and probabilistic logic.
The interested reader is referred to (Jaynes 1957; Smith and Grand 1985). The following
theorem holds ((Cover and Thomas 1989).

Theorem 12 If the given marginal distributions pr(xk) are consistent, then there exist a
unique distribution q(x) of mazimum entropy.

Consistent means that the marginal distributions fulfill the constraints defined by proba-
bility theory. The most popular algorithm to compute the maximum entropy distribution
is called iterative proportional fitting.

5.2 Iterative proportional fitting

Iterative proportional fitting computes iteratively a distribution g¢r(x) from given
marginals pi(xx), k¥ = 1,..., K, where x;, is a sub-vector of x and 7 = 0,1,2,... is the
iteration index. Let n be the dimension of x and di be the dimension of x;. Then the
update formula is

x) = a-(x Pr(Xk)

q7'+1( ) - q‘r( ) z q-r(xk;y) (24)
ye{0,1}" "%k

with k= ((r —1) mod K) + 1.

One can show that IPF converges to the distribution with mazimum entropy (Cover and
Thomas 1989). For the 1-D circle we have x; = {zr,xry1}, kK =1,...,n, Tnt1 = z1. Since
the distribution g, which has to be stored and updated in every time step, has exponential
size, the naive implementation takes exponential time and space.

The complexity can be greatly reduced by using a factorization of the distribution
(Jirousek and Preucil 1995; Meyer 1998). The algorithm uses only the computed clusters
of the factorization as marginals. The marginals can later be combined to compute the



whole distribution g(x). This algorithm produces exactly the same result as the standard
iterative proportional fitting. We have implemented a special version of this algorithm
developed by (Meyer 1998) in probabilistic logic. Due to space limitations we cannot
describe the algorithm here.

5.3 The factorization problem

The question, which additively decomposed functions can be factored into marginal
distributions of small order, is difficult to answer. It is not difficult to prove that all
one-dimensional graphical models can easily be factored by the junction tree method
presented. Unfortunately higher dimensional spatial graphs like 2-D grids lead to factors
with a large number of variables. In fact, the number of variables for some factors will
be of order O(n) (Miihlenbein, Mahnig, and Ochoa 1999). This is a substantial reduction
compared to the total number of variables n?, but the amount of computation needed for
these marginals is still exponential in n.

Thus the junction tree algorithm cannot be used in these cases. To solve this problem,
different methods have to be used. These methods iteratively approximate the unknown
distribution by the given marginals using an approximate junction tree. Other methods
do not use junction trees at all, but iteratively approximate p(x) for a given x. These
methods are called generalized belief propagation and advanced mean-field methods. They
are outside the scope of this paper. The interested reader is referred to (Opper and Saad
2001).

6 Sampling from a Boltzmann distribution

The Boltzmann distribution as a means to optimize functions has been proposed several
times in different scientific fields. The most popular variant is Simulated Annealing SA
(Kirkpatrick, Gelatt, and Vecchi 1983). The main problem of any implementation using
a Boltzmann distribution is to efficiently sample from the Boltzmann distribution. The
discrete optimization problem I

Xopt = argmax f(x) (25)
is converted to the continuous optimization problem IT
Xopt = argmax pg(x) (26)

Solving problem II instead of problem I makes only sense if problem II is easier than
problem I. Thus it should be easier to generate vectors x with high pg(x) than with high
values of f(x). Moreover, vectors x with a high probability p(x) should be generated in a
reasonable small sample. In this respect FDA and SA differ substantially.

We will first explain the sampling method of FFDA in detail. Let the function to be
optimized be
f(x) =214+ 22+ 23+ 14 — 22122 + T273 + 22374 (27)

Using a factorization FF'DA will generate a sample from

p(x) = ps(z1)ps(z2|w1)ps(ws|z2)ps(z4|2s) (28)



The samples are computed as follows. First z is set according to pg(z1,t). Fixing 1, x2
is computed from pg(z2|z1,t). Then z3 is computed, and so on.

Sampling theory from statistics can be used to compute the expected frequency pg(zopt of
the optimal string in a sample of size N. The expected average sample average to generate
one instance is given by Nay = 1/pg(zopt)-

The above estimate assumes that the conditional distributions needed to compute p(x,t)
are exact. Statistical sampling theory can be used to estimate a conditional distribution
p(zi|z) up to a precision of e. But it seems difficult to apply statistical sampling theory
to obtain lower bounds of the sample size N needed to approximate the full distribution
p(x,t) up to a precision €. We therefore leave it at this informal discussion.

The situation in simulated annealing is much worse. SA suffers from the mizing problem. If
the current vector x(t) is at a local optimum, it needs an exponential time in the difference
between the fitness of the local optimum and the nearest local minimum to leave the area
of the local optimum. It can be shown that even UM DA has no difficulties with medium
rugged landscapes. This issue is discussed in (Miihlenbein and Zimmermann 2000).

7 The adaptive annealing schedule SDS

Boltzmann selection needs a good annealing schedule. If we cool down (anneal) too fast,
the approximation error of the Boltzmann distribution due to the sampling error can be
very large. To consider an extreme case, if the annealing parameter is very large, the
second generation should only consist of the global maxima. But if we anneal too slowly,
then it takes a long time to approach the optima.

7.1 Taylor expansion of the average fitness

In order to determine an adaptive annealing schedule, we will make a Taylor expansion of
the average fitness. The average fitness Eg[f(z)] is now seen as a function of the inverse
temperature. We have proven (Mahnig and Miihlenbein 2001):

Theorem 13 The average fitness Eg[f(z)] using Boltzmann distributions has the follow-
ing erpansion in [3:

B3lf@)] = Bstf@) + 3 PP 9) (29)
i>1

where M{ are the centered moments

M{(B) = [f(x) — Bslf(2)]] pla) (30)

x

Corollary 14 We have approzimatively
Eglf(x)] - Bsf(2)] = (B - B) - 07 (B) (31)

where 0%(B) is the variance defined as o7(8) = MS5(B). For any B > B we have
Es[f(x)] > Eg[f(x)] unless f(z) = const.



The proof of the above theorem can be found in (Miihlenbein and Mahnig 2001).
Equation (31) was already proposed in (Kirkpatrick, Gelatt, and Vecchi 1983). It is a
macroscopic equation relating the average fitness and the variance. From (31) we can
derive an adaptive annealing schedule. We recall that truncation selection has proven to
be a robust and efficient selection scheme. For truncation selection the response to selection
R(t) (Miihlenbein and Mahnig 2000) is approximatively given by equation

R(t) := Eer[f(2)] — Ee[f (2)] = I-b(t)o s (t) (32)

I. is the selection intensity which depends on the truncation threshold 7. We will make
the Boltzmann schedule to mimic truncation selection by setting AB(t) accordingly.

Definition 15 The standard deviation schedule SDSis defined by B(t + 1) = B(t) +
c/as(B(1)).

Using SDS we obtain from equation (31)
R(t) = Eg(+-)[f (@)] = Bap[f(2)] = c- 04 (2) (33)

Thus SDS with Boltzmann selection behaves similarly to truncation selection if ¢ = I,:b(t).
We recently found that SDS has already been used for genetic algorithms in (Priigel-Bennet
and Shapiro 1997). But there SDS has been derived from a different perspective.

8 Mutation and the Bayesian hyper parameter

Both UM DA and FDA estimate marginal distributions from frequencies. Let X; = 1 be
a fixed allele. Let m be the number of instances of X; = 1 in the population. Usually p; is
estimated as p; = m/N. But in the Bayesian approach the estimated probability becomes
p=(m +r)/(N + 2r). The hyper parameter r has to be chosen in advance (Jordan 1999).
The hyper parameter is also called a Bayesian prior. It is related to mutation in genetic
algorithms. Mutation works in the following way: When generating new individuals, with
a probability of u every bit is changed.

Theorem 16 For binary wvariables, the expectation value for the probability using a
Bayesian prior with parameter r is the same as mutation with mutation rate p =
r/(N +2r). If we set r = N/(n — 2) we obtain p=1/n.

The theorem can easily be proven by calculating the probability of generating a particular
bit for both cases.

A hyper parameter moves the attractors from the corners of the unit cube into the inte-
rior. For r — oo there is a unique attractor at p; = 0.5. Using this prior UMDA becomes
a purely random algorithm. This algorithm will generate the optimum after many gen-
erations, but it will not stop at the optimum. Nevertheless, some researcher call this
convergence. But this convergence cannot be observed by any numerical algorithm. We
require that r should be small enough that the equilibrium distribution is concentrated
nearby the optimum.



Definition 17 UMDA or FDA are strongly converging, if they convergence to an equi-
librium distribution peq(x), and if sampling from this distribution generates the optimum
with probability at least 1/3.

For r = 0 the equilibrium distribution is a point distribution. For » > 0 the equilibrium
distribution is obtained from a dynamic equilibrium between selection (driving the pop-
ulation to the corner) and mutation (driving the population to the interior). The higher
the selection pressure, the larger the hyper parameter can be. In (Miihlenbein and Mahnig
2002a) the surprising result is shown that the recommended mutation rate of p = 1/n is
too large for proportionate selection, even for the OneMax function ) z;. The above anal-
ysis has been extended to marginal distributions of any order (Miihlenbein and Mahnig
2002b).

We summarize: A Bayesian hyper parameter increases the robustness of the algorithm with
respect to premature convergence because of a too small population size. But the prior has
to be chosen carefully in order that convergence can be numerically observed.

9 A population dynamics implementation of FDA

The main problem of the application of F DA is the computation of the factorization.
There are many optimization problems where the factorization leads to cliques, which are
so large that a use of FDA is not feasible.

We have already mentioned several approximation techniques, which do not use a fac-
torization. The most popular is Pearl’s generalized belief propagation (Opper and Saad
2001). This algorithm can be easily implemented in a way which mimics cooperation and
coevolution.

Given an additively decomposed function we can assign each sub-function to a different
species. These species cooperate to optimize the global fitness function f. Each species
may set the variables xs; which are contained in the sub-function they are responsible
for. There is a big difference between separable and non-separable functions. For separable
functions each species can separately optimize its sub-functions. If the fitness function is
not separable, the species have to send their proposals for setting x,, to a central instance.
This instance computes the fitness function and does selection.

There are several implementations possible, differing in the amount of centralism in the
selection step. The central part computes the fitness functions and does the selection. If
the graphical model corresponding to f(x) can be factored, the species are connected by
a tree. In Pearl‘s belief propagation species ¢ receives messages from its parent species
and sends messages to its child species. The messages are used to update conditional
probabilities. The update process is derived from the factorization theorem. In this case
we connect the species on a line. Species i — 1 sends the values of all variables set so far
to species 4, species ¢ computes the values of x;; given x., and adds these values to the
string. The string is send to species ¢ + 1. The iteration stops, if the leave is reached.

Belief propagation can formally be extended to arbitrary graphical models. which are not
arranged on a tree. If the graphical model contains cycles, the messages have to be sent a



number of iterations until the probabilities do not change anymore. Whether the iterations
converge is an open problem.

Many other schemes are possible. They differ in the assignment of variables as well in
the amount of centralism, cooperation and competition. The simplest implementation
allocates just one variable to each species. This algorithm has been discussed in (Potter
and Jong 2000). This algorithm mimics our UMDA.

10 A kingdom for approximating the Boltzmann
distribution

Our research has shown the importance of the Boltzmann distribution for evolutionary
algorithms. FDA samples efficiently from a Boltzmann distribution. It does the sampling
very different from Metropolis sampling used by Simulated Annealing.

If there is no structural information available about the function to be optimized, then it
is possible to learn a probabilistic structure from the data. The theory is called learning
in graphical models (Jordan 1999). There exist several optimization algorithms using this
approach. Our algorithm, called LFDA is described in (Miihlenbein and Mahnig 1999). A
theoretical analysis of this class of algorithms is very difficult. We believe that combinations
of the FDA approach (using structural information) and the LFDA approach (computing
a small graphical model from the data) will be successful heuristics. In (Miihlenbein and
Mahnig 2002b) the graph bipartitioning problem has been solved by such an algorithm.

The advantage of our approach is that FDA can be seen as a special method to approximate
a distribution. This problem arises in many scientific areas. Therefore a fascinating
interdisciplinary research is now going on — bringing together such diverse fields as
population based optimization, probabilistic reasoning, probabilistic logic, and statistical
physics. The core of the theory is the same: the factorization of the distribution if the
corresponding factor graph is singly connected. If an exact factorization leads to marginal
distributions with too many parameters, then new techniques are currently explored.
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