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Abstract� The Breeder Genetic Algorithm �BGA	 is based on the equa

tion for the response to selection� In order to use this equation for predic

tion� the variance of the �tness of the population has to be estimated� For
the usual sexual recombination the computation can be di
cult� In this
paper we shortly state the problem and investigate several modi�cations
of sexual recombination� The �rst method is gene pool recombination�
which leads to marginal distribution algorithms� In the last part of the
paper we discuss more sophisticated methods� based on estimating the
distribution of promising points�

� Introduction

The Breeder Genetic Algorithm �BGA� is based on the classical science of live�
stock breeding� The central part of the theory is the equation for the response
to selection

R�t� � b�t� � I � ��t� �	�

Here R denotes the response
 which is de�ned as the di�erence between the mean
�tness of the population at generation t
	 and t
 b�t� is the realized heritability

I is the selection intensity and � is the standard deviation of the �tness �	���
If b�t� and ��t� can be estimated
 the equation can be used for predicting the
mean �tness of the population� In livestock breeding many methods have been
developed to estimate the heritability �	��
 estimating the variance is still an
open question �	���

But in evolutionary computation we have more freedom� We can design new
recombination operators which have no counterpart in nature and use the above
equation to evaluate the operators� In �	�� we have made a further step away
from the biological example and investigated gene pool recombination GPR�
With GPR the genes of all selected parents are used to create o�spring� The
microscopic view of recombining two chromosomes in a Mendelian manner is
abandoned�

In this paper we shortly show why the analysis of sexual recombination is
so di�cult
 then we investigate two algorithms which use univariate marginal
distribution of selected points to generate new points� In the last section the
problem of estimating distributions is shortly discussed� The conditional distri�
bution algorithm is outlined and applied to optimization problems known to be
di�cult for genetic algorithms�



� Analysis of uniform crossover for two loci

The di�culty of analyzing Mendelian sexual recombination will be shown with a
simple example
 namely two loci and proportionate selection� In this case there
are four possible genotypes� ��� ��� ��� 	�� �	� ��� and �	� 	� which we index by
j � ��� 	� �� ��� We denote their �tness values f�� f�� f�
 and f� respectively� Let
qj�t� be the frequency of genotype j at generation t� For simplicity we restrict the
analysis to uniform crossover �	��� It is an example of two parent recombination
�TPR��

Theorem�� For proportionate selection and uniform crossover the gene fre�
quencies obey the following di�erence equation

qj�t 
 	� �
fj
�f�t�

qj�t� 

	

�
�j
Ds�t�
�f �t��

j � �� 	� �� �� ���

where � � ��	� 	� 	��	�� �f �t� �
P�

j�� fjqj�t� is the average �tness of the popu�
lation� and Ds�t� is de�ned as

Ds�t� � f�f�q��t�q��t� � f�f�q��t�q��t�� ���

Proof� For proportionate selection the gene frequencies qsj after selection are
given by

qsj �t� �
fj
�f �t�

qj�t�

Now we pair randomly between the selected parents and count how often geno�
type j arises after uniform crossover� We take j � � as an example� We easily
obtain

q��t 
 	� � qs��t� �qs��t� 
 qs��t� 
 qs��t� 
 	��qs��t�� 
 	��qs��t�q
s
��t�

Using that qs��t� 
 qs��t� 
 qs��t� 
 qs��t� � 	 we obtain the conjecture for j � ��
The remaining equations are obtained in the same manner� �
Equations ��� are identical to the ones known for diploid chromosomes in popu�
lation genetics ���
 despite the fact that the underlying genetic recombination is
di�erent� This shows that uniform crossover can be thought of as Mendelian re�
combination for haploid organisms� Note that Ds�t� � � if q��t�q��t� � q��t�q��t�
and f�f� � f�f�� The �rst condition is called linkage equilibrium in population
genetics�

This system of four nonlinear di�erence equations has not yet been solved
analytically �see the discussion in �	���
 but it is possible to derive an exact
expression for the realized heritability�

Theorem�� The realized heritability b�t� for uniform crossover is given by

b�t� � 	�
	

�
�f� � f� � f� 
 f��

D�t�
�f �t�V �t�

� ���



Proof� By summation we obtain

R�t� � �f�t 
 	�� �f �t� �
V �t�
�f �t�

�
	

�
�f� 
 f� � f� � f��

D�t�
�f�t���

���

where V �t� � ���t� denotes the variance of the population� Using S�t� � V �t�� �f �t�
we obtain equation �	�� �

Uniform crossover in genetic algorithms
 which models Mendelian recombi�
nation
 leads to very di�cult systems of di�erence equations� The genetic pop�
ulation moves away from linkage equilibrium� This makes an analysis of the
algorithm almost impossible� But in genetic algorithms we may use recombina�
tion schemes which lead to simpler equations�

Simpler equation are obtained if the population is in linkage equilibrium�
Without proof we note that linkage equilibrium is identical to the gene frequen�
cies being in Robbins proportions �	��� Here the probability of a genotype p�x�
is given by

p�x� �
nY
i��

pi�xi�� ���

where pi�xi� are the univariate marginal frequencies�
The assumption of linkage equilibrium is not as severe as one might think�

We have numerically con�rmed the conjecture that without selection
 the gene
frequencies of a population using uniform crossover will converge to linkage equi�
librium� This means that linkage equilibrium can be considered to be the limiting
distribution of any genetic recombination scheme applied without selection�

� Univariate Marginal Distributions

There exist a simple recombination scheme that maintains the population in
linkage equilibrium� we have called it gene pool recombination �GPR� �	��� In
GPR
 for each locus the two alleles to be recombined are chosen independently
from the gene pool de�ned by the selected parent population� The biologically
inspired idea of restricting the recombination to the alleles of two parents for
each o�spring is abandoned�

De�nition� In gene pool recombination the two 
parent� alleles of an o��
spring are randomly chosen for each locus with replacement from the gene pool
given by the parent population selected before� Then the o�spring allele is com�
puted using any of the standard recombination schemes for TPR�

For a discussion of gene pool recombination and its analysis see �	��� Gene
pool recombination leads to simple di�erence equations for the marginal frequen�
cies pi�xi� �	��� We generalize this idea and de�ne a conceptual algorithm which
uses univariate marginal frequencies directly�

Let x � �x�� � � � � xn�
 xi � f�� 	g
 f�x� be its �tness and q�x� its frequency�
Then the univariate marginal frequencies can be computed from

pi�xi� �
X
xjxi

q�x� ���



where the sum is taken over all x with xi held �xed� The conceptual Univariate
Marginal Distribution Algorithm �UMDA� is de�ned as follows�

UMDA

� STEP�� Set t � 	� Generate N � � points randomly�
� STEP�� Select M � N points according to a selection schedule� Compute

the marginal frequencies rt�i�xi� of the selected set�
� STEP�� Generate N new points according to the distribution qt���x� �Qn

i�� rt�i�xi�� Set t � t 
 	�
� STEP	� If not terminated
 go to STEP	

Theorem	� For proportionate selection the marginal frequencies of UMDA
obey the di�erence equation

pt���i�xi� � pt�i�xi�
�ft�i�xi�

�f �t�
���

where

�ft�i�xi� �
X
xjxi

f�x�
nY

j��

j ��i

pt�j�xj�

Proof� For proportionate selection the frequency of the selected points �qt�x� is
given by

�qt�x� �
f�x�

�f t
qt�x�

From
rt�i�xi� � pt���i�xi� �

X
xjxi

�qt�x�

equation ��� follows� �

The di�erence equation ��� can also be written in the form

pt���i�xi� � pt�i�xi� 
 pt�i�xi�
Ft�i�xi�

�f�t�
���

where
Ft�i�xi� � �ft�i�xi�� �f �t� �	��

The term Ft�i�xi� was already introduced in �	� � there it is denoted f�i	�xi���
The terms Ft�i�xi� minimize the weighted quadratic error

X
x

qt�x�

�
f�x� � �f �t� �

nX
i��

�i�xi�

��

The terms are used to de�ne the additive genetic variance VA
 called V� in
�	��



VA�t� �
X
xi

pt�i�xi� �Ft�i�xi��
� �		�

It is obvious that pt���i�xi� � pt�i�xi� i� F�i	�xi� � � or pt�i�xi� � �� Therefore
we obtain�
Corollary�For proportionate selection the UMDA stays in equilibrium
i� VA � ��

The response to selection is zero if the additive variance is zero� UMDA only
exploits the additive genetic variance� It is interesting to note that this result
is also used as a rule of thumb in livestock breeding� Up to now no rigorous
mathematical proof is available�

The corollary also implies that UMDA is not a global optimization method
for di�cult �tness functions� This problem has already been discussed for gene
pool recombination in �	���

The following theorem is a correct version of Fisher�s Fundamental Theorem
of Natural Selection ���
 restricted to populations in linkage equilibrium�

Theorem
� For UMDA with proportionate selection the response to selection
is given by

R�t� �
VA�t�
�f �t�



X
x

�q�x�

�
f�x�� �f�t� �

nX
i��

Ft�i�xi�

�
�	��

where �q�x� � qt���x� � qt�x� is the di�erence of the frequencies of genotype
x�

Proof�

X
x

�q�x�
nX
i��

Ft�i�xi� �
nX
i��

Ft�i�xi�
X
xjxi

�q�x�

�
nX
i��

Ft�i�xi��pi�xi�

�
nX
i��

pt�iF
�
t�i�xi�� �f �t�

Here �pi�xi� � pt���i�xi�� pt�i�xi�� Equation ��� was used for the last step� By
using

P
x�q�x�f�x� � R�t� and

P
x�q�x� � �� the conjecture is obtained� �

Corollary�The realized heritability of any algorithm based on univariate marginal
distributions can be estimated by

b�t� �
VA�t�

V �t�
� �	��



Proof� We have

R�t� �
VA�t�
�f �t�

�
VA�t�

V �t�

V �t�
�f �t�

�
VA�t�

V �t�
S�t�� �

VA�t��V �t� is called heritability in the narrow sense in livestock breeding ���

abbreviated by h�n� Estimating hn is one of the most di�cult parts in the science
of livestock breeding�

� A simple UMDA implementation

In order to implement UMDA
 estimates for the marginal distributions are nec�
essary� Especially the computation of Ft�i�xi� in Equation � is fairly computing
intensive� Independently of the theory presented in this paper a simple algorithm
has been already proposed in ���� In this algorithm the univariate marginal fre�
quencies are updated according to

pt���i�xi� � pt�i�xi� 
 	�rt�i�xi�� pt�i�xi�� �	��

where rt�i�xi� are the marginal frequencies of the selected points and 	 is a con�
trol parameter� The resulting algorithm we call the simple univariate marginal
distribution algorithm �SUMDA��

SUMDA

� STEP�� Set t � 	� Set p��i�xi��
� STEP�� Generate N new points according to the distribution qt���x� �Qn

i pt�i�xi��
� STEP�� Select M � N points according to a selection schedule� Compute

the marginal frequencies rt�i�xi� of the selected set�
� STEP	� Update the marginal frequencies according to equation �	��� Set
t � t 
 	�

� STEP
� If not terminated
 go to STEP	

Note that 	 in�uences the speed of convergence� The smaller 	
 the less the
convergence speed� Before we show some computational results
 we qualitatively
analyze the algorithm� We simplify the notation pt�i�xi� � p�t� and rt�i�xi� �
r�t�� We start with the simplest case�

Theorem�� Assume that r�t� � c with � � c � 	� Then

p�t 
 	� � p�	��	� 	�t � c�	� 	�t 
 c t � �� 	� � � � �	��

The proof is straightforward and will be omitted� We obviously have

limt��p�t� � c

In a real algorithm r�t� will oscillate� A qualitative analysis of the SUMDA
algorithm has been �rst made in �		��



Theorem�� If the di�erence Equation ��	� can be approximated by the di�er�
ential equation

dp�t�

dt
� 	 �r�t�� p�t�� � �	��

the solution is given by

p�t� � p�	�e��t 
 	e��t
Z t

�

r�
 �e��d
 �	��

If r�t� � c one obtains an approximation of equation �	��� But in real simu�
lations one observes that SUMDA often consists of two phases� In the �rst phase
�� � t � t�� r�t� more or less randomly oscillates about a mean � r�t� �t�

� � If
p�t� gets more focused
 then r�t� changes accordingly�

In table 	 we give numerical results for the linear function ONEMAX� Note
how 	 in�uences the convergence speed� Because the size of the population
 N 

is very large
 the speed of convergence is almost independent of the size of the
problem n� For di�cult multi modal �tness functions the success of SUMDA
depends on the parameter 	 and N � We have to omit this discussion here� But it
should be obvious that SUMDA su�ers from the problem
 all algorithms using
marginal distributions only have� they are not able to handle higher order gene
interactions�

n � �� n � �� n � �� n � ��
t �p std�p	 �p std�p	 �p std�p	 �p std�p	

�� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� �����
�� ����� ����� ����� ����� ����� ����� ����� �����

Table �� SUMDA� N � ������ � ���� n � ���� � ���� else

� Conditional distributions

Gene pool recombination with two parent mating and uniform crossover as well
as the two marginal distribution algorithms UMDA and SUMDA exploit the
additive genetic variance mainly� The suitability of these algorithms for solving
optimization problems with strongly interacting genes at di�erent loci seems
limited�

An extension of univariate marginal distribution algorithms are multivariate
ones� Unfortunately it is di�cult to generate the probabilty p�x� of genotype x
from multivariate marginal distributions� We demonstrate the problem with an
example� For n � � loci for instance
 we may use p�x� � p�x�� x�� p�x�� x
�� But
then four of the six bivariate distribution are left out� There are methods to solve



this problem by using a system of equations as constraints
 but the number of
multivariate distributions scales exponentially� Therefore it seems easier to use
conditional distributions p�xijx�� � � � � xi��� xi��� � � � � xn� to reconstruct interac�
tions between the variables� We use the notation

x�i �� �x�� � � � � xi��� xi��� � � � � xn��

Then p�xijx�i� is the probability of xi given x�i� Besag ��� has proven that the n
di�erent conditional distributions p�xijx�i�
 i � 	� � � � � n
 completely determine
the joint distribution p�x�� In our algorithm we will use conditional distributions
p�x�� � � � � xmjxm��� � � � � xn�� In order to keep the description simple we will start
with an algorithm using p�xijx�i� only�

There are a number of methods in statistics that estimate conditional dis�
tributions� We selected regression tree methods because they are reasonably
accurate and computationally cheap� Algorithms for classi�cation and regres�
sion trees date back to Sonquist and Morgan �	�� and have been improved by
Breiman et al����
 see also ��� �	���

It turns out that the estimation of conditional distributions is very di�cult�
We are not able to describe our conditional distribution algorithm CDA here�
It uses tree regression to estimate conditional distributions
 and the Metropolis�
Hastings algorithm to correct the estimates� In order to speed up the compu�
tation we use a cluster algorithm to compute the conditional distributions for
correlated variables� Furthermore we scale the probability distribution p�x� in
order to concentrate its mass near the optima of f�x��

In the next Section we give �rst numerical results�

� Numerical results

Deceptive problems have been introduced by Goldberg ��� as a challenge to
genetic algorithm� For these functions genetic algorithms will converge to sub�
optimal points� To overcome this problem
 a radically di�erent type of genetic
algorithm called a messy genetic algorithm has been devised and tested by Gold�
berg and his coworkers� In a messy genetic algorithm the interaction of genes is
tested with substrings in a primordial phase� Of crucial importance is the ini�
tialization� The interested reader should consult �	�� for a recent update of the
messy genetic algorithm applied to deceptive problems�

Our conditional distribution algorithm CDA tries to determine the important
interactions more globally with well�known statistical techniques� The implemen�
tation of CDA is much more di�cult than a genetic algorithm or an algorithm
using univariate marginal distributions only�

For our numerical experiments we used the following deceptive functions�

f��d�x� �

�n�����X
i��

g��d� x�i��� x�i��� x�i��� �	��

�	��



where

g��d� x�� x�� x�� �

����
���

	� d�
P

xi � ��
	� � d�

P
xi � 	�

��
P

xi � ��
	�

P
xi � ��

����

��	�

The function f
 is de�ned similarly to f�� The function f�
��	 has clusters of
three and �ve interacting variables� By using an exponential transformation the
marginal distributions of the clusters are independent from each other�

n func N � eval

�� f�� d � ��� ���� ��� ��	 �����
�� f��Goldberg ���� ��� ��	 ������

�� f�� d � ��� ���� ��� ��	 ������
�� f������ d � ��� ���� ��� ��	 ������

��� f�� d � ��� ���� ��� ��	 ������

��� f�� d � ��� ���� ��� ��	 �������

��� f�� d � ��� ���� ��� ��	 ������

Table �� Numerical results for CDA

Preliminary numerical results are presented in the Table �� They clearly show
that the algorithm is able to solve large deceptive problems� But the algorithm
is at this stage more a conservative statistical estimation procedure than an
optimization algorithm� It will take some time and lots of numerical experiments
to end up with an e�cient and reliable optimization algorithm�

Our results are not directly comparable to �	��
 because there a a deceptive
function with a �tness value of ���� for the local optimum x � ��� �� �� �� ��
is used� We have used a �tness value of ���� Goldberg�s deceptive function is
substantially easier to solve
 because the di�erence between the global and the
local optimum is larger� Our algorithm needs for Goldberg�s deceptive function
of n � �� about 	�� function evaluations compared to our deceptive function�

Nevertheless
 Goldberg�s messy genetic algorithm seems to need substantially
less function evaluations than our algorithm� But in our opinion
 the messy ge�
netic algorithm uses the cluster size as a priori information Furthermore
 the
interacting variables are supposed to be contiguously located� Our algorithm de�
tects all interactions without prior information� This is shown with the function
f�
��	� Here clusters of size � and size � alternate
 unknown to the algorithm�

From our statistical experience we believe that it is impossible to detect all
important gene interactions by simply manipulating substrings like it is done
in the messy genetic algorithm� Whether our conjecture is true the future will
show
 when experiments with a variety of deceptive functions are made�
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