Asynchronous parallel search by the parallel genetic algorithm

Heinz Mihlenbein
GMD Schloss Birlinghoven
D-5205 Sankt Augustinl

Abstract

The parallel genetic algorithm (PGA) is a proto-
type of a new kind of a distributed algorithm. It s
based on a parallel search by individuals all of which
have the complete problem description. The informa-
tion exchange between the individuals is done by simu-
lating biological principles of evolution. The PGA 1s
totally asynchronous, running with maxrimal efficiency
on MIMD parallel computers. The search strategy of
the PGA s based on a small number of intelligent and
active individuals, whereas a GA uses a large popula-
tion of passive individuals. We will show the power of
the PGA with two combinatorial problems - the graph
partitioning problem and the autocorrelation problem.
In these examples, the PGA has found solutions of
very large problems, which are comparable or even bet-
ter than any other solution found by other heuristics.

1 Introduction

Random search methods based on evolutionary
principles have been already proposed in the 60’s.
They did not have a major influence on mainstream
optimization. We believe that this will change. The un-
ique power of evolutionary algorithms shows up with
parallel computers. Firstly, our parallel genetic algo-
rithm PGA introduced in 1987 [19] runs especially ef-
ficient on parallel computers. Secondly, our research
indicates that parallel searches with information ex-
change between the searches are often better than in-
dependent searches. Thus the PGA is a truly parallel
algorithm which combines the hardware speed of par-
allel processors and the software speed of intelligent
parallel searching.

We have successfully applied the PGA to a number
of problems, including function optimization [21] and
combinatorial optimization. In this paper we summa-
rize the results for the graph partitioning problem and
the low autocorrelation problem. The quadratic assi-
gnment problem has been published elsewhere [17].

The travelling salesman problem is discussed in [18].

We believe that the idea on which the PGA is based
can be extended far beyond optimization problems.
The PGA is totally asynchronous. It runs with grace-
ful degradation. The algorithm works as long as one
search is running. On the other hand, we have shown
in [21] that in certain instances a superlinear speedup
can be observed if all searches run in parallel.

2 Parallel search and optimization

In this paper we consider the following problem:

OPT 1 P: Gwen a function F : X — R, where X
1s some metric space. Let S be a subspace of X. We
seek a point x in S which optimizes F' on S or at least
yields an acceptable approximation of the suprenum of

F oon S.

Many optimization methods have been proposed for
the solution of this problem. We will investigate paral-
lel optimization methods. A parallel optimization me-
thod of parallelism N is characterized by N different
search trajectories, which are performed in parallel. It
can be described as follows

it = Gyl aly, F(2h), Faly)i=1,...,N (1)

The mapping G = (G4, ...Gy) describes the linkage
or information exchange between the parallel searches.
If the IV searches are independent of each other we just
have

vt = Glag, F(x))) (2)

A parallel search method which combines the infor-
mation of two searches can be described as follows

l‘z-l—l = Gl(l‘f_l,l‘f,F(l‘f_l),F(l‘f))l = 1’ ’N (3)

The basic questions of parallel search methods can
now be stated

e Are N parallel searches of time complexity t as

efficient as a single search of time complexity N *¢
7

o Are N linked searches more efficient than N inde-
pendent searches?

e How should the linkage be done?

In order to understand these questions intuitively,
we leave the abstract mathematical description and
turn to a natural search metaphor. The advantage of
using a metaphor is that it leads to a qualitative un-
derstanding of the problem and the algorithm.

In this paper, we will investigate search algorithms
which mimic evolutionary adaptation found in nature.
Each individual is identified with an animal, which
searches for food and produces offspring. In evolutio-
nary algorithms, F'(z;) is called the fitness of indivi-
dual 1, xﬁ"’l is an offspring of !, and G is called the
selection schedule. One of the most successful evolu-
tionary algorithms is the genetic algorithm invented

by Holland [12].

3 Genetic algorithms

Recent surveys of genetic algorithms can be found
in [11] and [?]. The basic genetic algorithm can be
described as follows:

Genetic Algorithm

STEPO: Define a genetic representation of the pro-
blem

STEP1: Create an initial population P(0) =z, ..2%

STEP2: Compute the average fitness
F = va F(z;)/N. Assign each individual
the normalized fitness value F'(z!)/F

STEP3: Assign each z; a probability p(z;,t) pro-
portional to its normalized fitness. Using
this distribution, select N vectors from P(t).
This gives the set S(t)

STEP4: Pair all of the vectors in S(¢) at random for-
ming N/2 pairs. Apply crossover with pro-
bability p.ross to each pair and other genetic
operators such as mutation, forming a new
population P;yq

STEPS5: Set t =¢ + 1, return to STEP2

In the simplest case the genetic representation is
just a bitstring of length n, the “chromosome”. The
positions of the strings are called “locus” of the chro-
mosome. The variable at a locus is called “gene” | its
value “allele”. The set of chromosomes is called the
“genotype® which defines a “phenotype” (the indi-
vidual) with a certain fitness. The crossover operator
links two searches. Part of the chromosome of one indi-
vidual (search point) is inserted into the second chro-
mosome giving a new individual (search point). We
will later show with examples why and when crosso-
ver guides the search.

A genetic algorithm is a parallel random search

with centralized control. The centralized part is the
selection schedule. For the selection the average fitness
of the population is needed. The result is a highly syn-
chronized algorithm, which is difficult to implement
efficiently on parallel computers.
In our parallel genetic algorithm, we use a distribu-
ted selection scheme. This is achieved as follows. Each
individual does the selection by itself. It looks for a
partner in its neighborhood only. The set of neighor-
hoods defines a spatial population structure.

Our second major change can now easily be under-
stood. Each individual is active and not acted on. It
may improve its fitness during its lifetime by perfor-
ming a local search.

A generic parallel genetic algorithm can be described
as follows

Parallel genetic algorithm

STEPO: Define a genetic representation of the pro-
blem

STEP1: Create an initial population and its popula-
tion structure

STEP2: Each individual does local hill-climbing

STEP3: Each individual selects a partner for mating
in its neighborhood

STEP4: An offspring is created with genetic crosso-
ver of the parents

STEPS5: The offspring does local hill-climbing. It re-
places the parent, if it is better than some
criterion (acceptance)

STEPG6: If not finished, return to STEP3.

It has to be noted, that each individual may use a
different local hill-climbing method. This feature will
be important for problems, where the efficiency of a

particular hill-climbing method depends on the pro-
blem instance.

In the terminology of section 2, we can describe the
PGA as a parallel search with a linkage of two sear-
ches. The linkage is done probabilistically, constrai-
ned by the neighborhood. The information exchange
within the whole population is a diffusion process be-
cause the neighborhoods of the individuals overlap.

There have been several other attempts to imple-
ment a parallel genetic algorithm. Most of the algo-
rithms run £ identical standard genetic algorithms in
parallel, one run per processor. They differ in the lin-
kage of the runs. Tanese [23] introduces two migra-
tion parameters: the migration interval, the number
of generations between each migration, and the mi-
grationrate, the percentage of individuals selected for
migration. The subpopulations are configured as a bi-
nary n-cube. A similar approach is done by Pettey et
al. [22]. In the implementation of Cohoon et al. [2] it
is assumed that each subpopulation is connected to
each other. The algorithm from Manderick et al. [15]
has been derived from our PGA.

All but Manderick’s algorithm use subpopulations
that are densely connected. We have shown in [18]
why restricted connections like a ring are better for
the parallel genetic algorithm. All the above parallel
algorithms do not use hill-climbing, which is one of the
most important parts of our PGA.

An extension of the PGA, where subpopulations
are used instead of single individuals, has been descri-
bed in [21]. This algorithm outperforms the standard
GA by far in the case of function optimization. It is
also a better search method than most of the standard
mathematical methods.

4 The search strategy of the PGA

The search strategy of the PGA is governed by
three components - the crossover operator, the spatial
population structure and the hill-climbing strategies.
We will briefly discuss the effects of these components.

The crossover operator is the fundamental part of
any genetic algorithm. There have been attempts to
“prove” that genetic algorithms make a nearly opti-
mal allocation of trials because of crossing-over. This
result is called the “Fundamental Theorem of Gene-
tic Algorithms” [11]. We have shown in [18] that the
above claim is only valid for very simple optimization
problems. The search strategy of a genetic algorithm
can be explained in simpler terms. The crossover ope-
rator defines a scatter search [6] where new points are

drawn out of the area which is defined by the old or
“parent” points. The more similar the old points are,
the smaller will be the sampling area. Thus crossing-
over implements an adaptive step-size control. Why
and when does this search strategy make sense?

Let us assume that the combinatorial problem has
the building block feature. We speak of a building block
feature if the substrings of the optimal solutions are
contained in other good solutions. In this case it seems
a good strategy to generate new solutions by patching
together substrings of the old solutions. This is simply
what the crossover operator does. Unfortunately the
crossover operator does not know which substrings are
part of the optimal solution. So 1t combines randomly
the two strings (“chromosomes”) of the parents.

The major difficulty is to define a crossover operator
which creates valid solutions i.e. solutions which fulfill
the constraints of the problem. We will explain this
problem with the graph partitioning problem in the
next section.

The introduction of a spatial population struc-
ture with selection done by the individuals themselves
changes the PGA to an asynchronous distributed algo-
rithm. Each individual of the PGA is a complete pro-
blem solver. It has the knowledge about the problem
and a complete program for obtaining an approximate
solution. The PGA does not use any synchronization.
Each processor sends its latest results to the neighbo-
ring processors. If an individual on a specific processor
looks for a partner for mating, it uses the informa-
tion which is contained in the local copies. There i1s no
complex handshaking protocol between individuals to
get the latest information. Therefore the PGA is ex-
tremely fault-tolerant. It works with a few number of
individuals, but the results are better if a larger num-
ber of individuals is used. The PGA also continues to
work, if a processor fails or an individual stops during
a run.

The GA community is not yet convinced that using
alocal hill-climbing method in genetic algorithms pays
off. Our research indicates that a PGA with a good
hill-climbing strategy performs better than a PGA
with a simpler strategy or a PGA without any hill-
climbing strategy. This has been shown for function
optimization [21], the travelling salesman problem and
a difficult 30-bit function [18].

Local hill-climbing of the individuals has an addi-
tional benefit. It increases the amount of computation
compared to the amount of communication. Therefore
the PGA can be tailored to the problem and the com-
munication throughput of the parallel processor.

In summary, the PGA is a distributed algorithm

with new features which make it very attractive for
massively parallel systems. The parallelism is introdu-
ced by replicating the problem. The parallel searches
first explore different search areas, then they concen-
trate more and more on promising areas.

5 The graph partitioning problem

The graph partitioning problem (GPP) is a funda-
mental combinatorial problem which arises in many
applications. The task is to divide a given graph into
a number of partitions in order to optimize some cri-
terion e.g. to minimize the number of edges between
partitions. More formally:

Let a graph G = (V,E,w) be given. V =
{v1,va,...,v,} is the set of nodes, E C V x V is
the set of edges and w : E — IN defines the weights
of the edges.

The GPP is to divide the graph into m disjunct
parts, such that some optimization criteria will be ful-
filled. In this paper we will consider the following op-
timization criteria:

OPT 2 (GPP) Let P = {Py,..., P} be a partition.
Let G = (g192...gn) denote the partition to which the
nodes belong (1 < g; < m). Then we look for

such that o(P) is minimal.

o(P) is defined as

1 & 1 &
ZP:_ Piz_ - PZ'Z
PP = L LI = (IR

In order to solve the GPP, we have to define the ge-
netic representation and the genetic operators. In the
simplest representation, the value (allele) g; on locus
¢ on the chromosome gives the number of the parti-
tion to which node v; belongs. But this representation
is highly degenerate. The number of a partition does
not have any meaning for the partitioning problem.
An exchange of two partition numbers will still give
the same graph partition. In fact, any permutation of
the m partition numbers gives the same solution. All-
together m! chromosomes give the same solution with
the same fitness value

FG) = Y wj
1<i<j<n
giF#g;j

These m! chromosomes code the same partitioning
instance, the same phenotype”. This genetic represen-
tation does not capture the structure of the problem.
We did not find a better genetic representation, so we
decided that the crossover operator has to be ”intelli-
gent”. Our crossover operator inserts complete parti-
tions from one chromosome into the other, not indivi-
dual nodes. It computes which partitions are the most
similar to each other and exchanges these partitions.
Mathematically spoken, the crossover operator works
on equivalence classes of chromosomes.

Figure 1 shows an example. The problem is to par-
tition the 4x4 grid into four partitions.

crossing-over

repair

Figure 1: The crossover operator

The crossover operator works as follows. The PGA
has randomly decided that partition 2 has to be in-
serted into B. The crossover operator finds, that par-
tition 4 of B is the most similar to partition 2 in A. It
identifies partition 2 of A with partition 4 of B. Then
it exchanges the alleles 2 and 4 in chromosome B to
avoid the problems arising from symmetrical soluti-
ons. In the crossover step it implants partition 2 of

chromosome A into 5.

After identifying all genloci and alleles which lead
to a nonvalid partition a repair operator i1s used to
construct a new valid chromosome. Mutation is done
after the crossover and depends on the outcome of the
crossover. In the last step a local hill-climbing algo-
rithm 1s applied to the valid chromosome.

For local hill-climbing we can use any popular se-
quential heuristic. It should be fast, so that the PGA
can produce many generations. In order to solve very
large problems; it should be of order O(n) where n is
the problem size. Our hill-climbing algorithm is of or-
der O(n?), but with a small constant. At the start of
the algorithm we reduce the size of the graph by com-
bining up to r nodes into one hypernode. Then 2-opt
is applied to the reduced graph. In later generations
we apply 2-opt only to nodes which have connections
to outside partitions (see [25] for details).

6 Performance evaluation for the GPP

A detailed study of the graph bipartitioning pro-
blem can be found in [13]. In that paper random gra-
phs and random geometric graphs up to 1000 nodes
are used to compare different heuristics. We decided
to make a performance analysis with real life graphs.
Furthermore we are more interested in the general par-
titioning problem, not in the bipartitioning case. De-
tailed results can be found in [24].

We will give here the computational results for sol-
ving two of the largest GPP benchmarking problems.
The problems are called EVER918 and EVER1005 [4].
EVER918 is a 3-D graph which consists of 918 nodes
and 3233 edges. It has to be partitioned into 18 par-
titions. FVERI1005 has 1005 nodes and 3808 edges.
It has to be partioned into 20 partitions. All results
have been obtained on a TRANSPUTER, based 64-
processor system [20].

Table 1 gives a comparison to other solutions, which
have been computed recently. MultOpt and MultLk are
multiple runs of the local search methods 2-opt and
the more general Lin-Kernighan exchange [14]. Tt has
to be noticed, that the heuristics of Gilbert et al. [5]
and of Moore [16] do not use the constraint of equal
partition size. This partitioning problem is simpler,
furthermore the solutions should have a smaller cost.
Nevertheless, the PGA found in one case the best so-
lution (EVER918). In the second problem, the PGA
found the best solution with minimal o(|P])

How can the good results of the PGA be explained?
We claim that GPP has the building block feature in

| prob. | alg. | costs | o (|P)) |
EVER918 | MultOpt | 1020 0.00
MultLK 625 0.00
GZ87 587 0.99
Moore 453 0.99
PGA 431 0.00
EVER1005 | MultOpt | 1023 0.40

MultLk 725 0.40
GZ87 696 1.29
Moore 608 1.29
PGA 631 0.40

Table 1: Comparison of GPP solutions for problem
beam

some space which the crossover operator explores. The
proof is analogous to the TSP case, see [18] for details.
It is based on a configuration space analysis of local
mimima. This analysis is much more difficult for the
GPP than for the TSP problem, because of the sym-
metry or degeneration mentioned earlier. The analysis
has to be done in the space of all equivalence classes
of local minima. The equivalence classes are defined
by the crossover operator.

The next combinatorial problem does not have any
constraints. Here the genetic representation and the
crossover operator are straightforward.

7 Low autocorrelation binary

sequences

The investigation of the properties of low autocor-
relation binary sequences has a long history and is of
great interest for technical as well as theoretical re-
asons. Autocorrelation sequences play an important
role in several communication engineering applicati-
ons [1]. From the theoretical point of view it seems to
be a very difficult optimization problem and the cost
function seems to show a golf course like configuration
space landscape with an irregular structure.

The autocorrelation function is defined on a Boo-
lean hypercube of size n. The elements are binary
squences S = ($1,..., $p) , where s can have the value
41 or -1. To measure the quality of such a sequence,
the following standard criterion, called merit factor F
was introduced by Golay [8].

PN YR (4)

i=1

n—k
Ri:ZSk*5k+i;1§k§n_1 (5)
k=1

OPT 3 (Auto) The best autocorrelation sequence of
size n is given by F* = maxg F'(5)

Skew-symmetric sequences of odd length n=2m-1

are defined by
Sl = (—1)lsm_l, 1<li<n-1

These sequences seem to be good candidates for
high merit factors. In the following we will only con-
sider skew-symmetric sequences. The configuration
space can then be reduced from 2" elements to 2™
elements.

This problem has been investigated recently by Be-
enker [1] , Golay [9], Wang [26] and de Groot [3]. Be-
enker used simulated annealing, Golay enumeration
techniques, Wang and de Groot evolutionary algo-
rithms.

The genetic representation of this problem seems
to be straightforword. Just take the binary string of
length m as chromosome. The phenotype 1s then the
skew-symmetric chain of length n = 2m — 1. There
are no constraints, each sequence is valid. So it seems
that a plain PGA can solve this problem easily. But
notice, that every configuration is 4-fold degenerated:
inversion and sequence reversal give the same merit
factor. The following four sequences give the same fit-
ness value for the case n =5 m =3

Siny | -1 | 1] 1]-1

Sinv' | 1]-1]-11] 1]-1

With this representation, no structure of the se-
quences shows up. We have shown elsewhere [17], that
in such cases a simple crossover will not lead to a bet-
ter maximum. For a genetic algorithm, it is a bad
thing to make a crossing-over between e.g. s and s’.
These sequences are opposite to each other located on
a m-dimensional hypercube. Crossover tries to com-
bine these searches which are phenotypically equal but
genetically opposite to each other.

The above situation does only seldom occur with
the PGA. In a PGA, crossing-over is only done bet-
ween nearby individuals. Thus the individuals in a
neighborhood get more and more similar. So it be-
comes unlikely that individuals in a neighborhood are

n | Beenker | Golay | Wang | Groot | PGA
81 7.323 8.20 8.04 | 8.20
101 6.058 8.36 | 6.911 8.36 | 8.36
103 5.900 9.56 | 7.766 9.56
109 8.97 8.97
113 8.49 8.49
141 6.01 6.48 | 7.45
161 6.02 6.89
181 5.70 6.02 | 6.77
201 5.92 | 6.29

Table 2: Comparison of best solutions found

genetically very different. The breeders call this effect
inbreeding.

The above representation did not give good results,
therefore we changed it slightly. The modification was
motivated by an observation of Golay [10] . He showed
that good skew-symmetric solutions of order n can be
found by an interleaving of good symmetric and an-
tisymmetric solutions of order n/2. We show for the
case n = 13,m = 7 how this is done :

So we tested the idea, to use two chromosomes as
genetic representation. In the above example we have
the following two chromosomes c¢;ym = (1,1,1,-1)
and cqsym = (1,1, —1) The phenotype defined by these
chromosomes can be obtained by interleaving c,ym
and cusym and then expanding the string to a skew-
symmetric string. This will give the string shown in
the first line above.

Our local hill-climbing method is very simple. One
bit is flipped on the skew-symmetric string. This
change is accepted, if the fitness value increases. Then
the next bit is flipped and so on.

In table 2 the computational results are given. The
PGA found all solutions from Golay [10], who used an
enumeration technique tailored to the autocorrelation
problem. De Groot used an evolutionary algorithm
without crossing-over. He kept the sample points far
apart by accepting only points which had a minimum
Hamming distance to all other points.

Why did the PGA perform so good? Our genetic re-
presentation does not lead to a building block feature.

The two chromosomes encode only little information
about the problem.

In the autocorrelation problem the secret of success
seems to be our local hill-climbing. We will demon-
strate this with a small example of size n = 31. For n =
31 there exist one optimal solution with F' = 6.08228
and four suboptimal solutions with F' = 5.52299. After
only three generations the PGA always found the best
solution and three of the suboptimal solutions. We will
show how the best solution was found in a typical ex-
ample. In the following table the parent chromosomes
and the offspring chromosome are shown in various
stages of the algorithm.

state Ssym Sasym F
parentl | 10000011 | 11000101 | 3.599
parent2 | 01011011 | 11011110 | 3.599

cross | 11010011 | 11001111 | 2.235

mutat. | 11000011 | 11011111 | 1.115
hill-cl. | 00100111 | 11010111 | 6.082

In the table we use 0 instead of -1. Crossover is done
between the underlined substrings. Crossing-over and
a small mutation of 1 bit leads to a string with very
low fitness value. Nevertheless climbs the local search
from 1.115 up to the global optimum. This behavior
is different to other combinatorial problems like the
GPP, where crossing-over explored the building blocks
of the solution.

We are now evaluating, if random insertion of a
large string instead of crossingover will give the same
or better results. If this is not the case, we have to ana-
lyze, what kind of structure crossing-over is exploring
in the autocorrelation problem.

8 Conclusion

The parallel genetic algorithm has been very suc-
cessful applied to benchmark combinatorial optimiza-
tion problems. The algorithm uses a distributed se-
lection schedule, it self-organizes itself. The crossover
operators described in this paper are not the only ones
possible. Glover [7] has suggested adaptive structured
combinations for the TSP and the graph bipartitioning
problem. We have used a voting crossover operator
for the quadratic assignment problem, which combi-
nes five solutions instead of two [17]. A good problem
dependend crossover operator is in many applications
the key to the success of the PGA.

The clean PGA described in this paper is a very
simple, but robust distributed algorithm. The major

problem is the following. In the last stage of the al-
gorithm the same evaluations are done over and over
again. The clean PGA does not have any memory. For
a computational optimal PGA it seems to be promi-
sing to implement some kind of memory, maybe con-
trolled by tabu search [7]. The population of individu-
als could make hypotheses about which areas should
not be searched and which areas should be explored.

Other extensions are also worthwhile to explore. We
suggest that one or more individuals should use a very
sophisticated hill-climbing method. These individuals
will be supplied with the best solutions obtained so far
and try to improve it. Another extension 1s to change
the size of the population. If a neighborhood gets to
similar, then it should shrink.

We will implement these extensions in the course
of applying the PGA to more and more challenging
applications. We have been very surprised that the
clean PGA was able to obtain such good results for
classical optimization problems.

The success of the PGA suggest exploring other
problem solving metaphors also. Why not use the mar-
ket of economy as a parallel search method? This could
be the beginning of another family of distributed algo-
rithms. Moreover a comparison of problem solving by
a market framework and by biological evolution on the
same set of artificial problems would also give further
insight into economy and biology.

References

[1] G.F.M. Beenker, T.A.C.M. Claasen, and P.W.C
Hermens. Binary sequences with a maximally
flat amplitude spectrum. Phill. J. of Research,
40:289, 1985.

[2] J.P. Cohoon, S.U. Hedge, W.N. Martin, and
D. Richards. Punctuated equilibria: A parallel ge-
netic algorithm. In J.J. Grefenstette, editor, Pro-
ceedings of the Second International Conference
on Genetic Algorithms, pages 148-154. Lawrence
Erlbaum, 1987.

[3] C. de Groot, D. Wiirtz, and K.H. Hoffmann. Low
autocorrelation binary sequences: exact enumera-
tion and optimization by evolutionary strategies.
Technical report, ETH Zurich TPS 89-09, 1989.

[4] G.C. Everstine. A comparison of three resquen-
cing algorithms for the reduction of matrix profile
and wavefront. Int. J. Numer. Meth. in Engin.,
14:837-853, 1979.

[5]

[16]

[17]

J.R. Gilbert and E. Zmijewski. A parallel graph
partitioning algorithm for message- passing mul-
tiprocessors. In First Int. Conf. on Supercompu-

ting, 1987.

F. Glover. Heuristics for integer programming
using surrogate constraints. Decision Sciences,

8:156-166, 1977.

F. Glover. Tabu search for nonlinear and para-
metric optimization. Technical report, University

of Boulder, 1991.

M.J.E. Golay. Sieves for low autocorrelation bi-
nary sequences. IEEE Trans. on Inform Theory,
23:43, 1977.

M.J.E. Golay. The merit factor of long low au-
tocorrelation binary sequences. IEEE Trans. on

Inform. Syst., 28:543, 1982.

M.J.E. Golay and D. Harris. A new search for
skewsymmetric binary sequences with optimal
merit factors. Technical report, 1989.

D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, 1989.

J.H. Holland. Adaptation in Natural and Artifi-
ctal Systems. Univ. of Michigan Press, Ann Ar-
bor, 1975.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and
C. Schevon. Optimization by simulated anne-
aling: An experimental evaluation; part 1, graph
partitioning. Operations Research, 37:865-892,
1989.

S. Lin and B. W. Kernighan. An efficient heuristic
for the traveling salesman problem. Operations

Research, 21:298-516, 1973.

B. Manderick and P. Spiessens. Fine-grained par-
allel genetic algorithm. In H. Schaffer, editor, 3rd
Int. Conf. on Genetic Algorithms, pages 428-433.
Morgan-Kaufmann, 1989.

D. Moore. A round-robin parallel partitioning al-
gorithm. Technical Report 88-916, Cornell Uni-
versity, 1988.

H. Mihlenbein. Parallel genetic algorithm, popu-
lation dynamics and combinatorial optimization.
In H. Schaffer, editor, 3rd Int. Conf. on Gene-
tic Algorithms, pages 416-421, San Mateo, 1989.
Morgan Kaufmann.

[18]

[20]

[23]

[26]

H. Miihlenbein. Evolution in time and space - the
parallel genetic algorithm. In G. Rawlins, editor,
Foundations of Genetic Algorithms, pages 316—
337, San Mateo, 1991. Morgan-Kaufman.

H. Mihlenbein, M. Gorges-Schleuter,
and O. Kramer. New solutions to the mapping
problem of parallel systems - the evolution ap-

proach. Parallel Computing, 6:269-279, 1987.

H. Mihlenbein, O. Kramer, G. Peise, and
R. Rinn. The MEGAFRAME Hypercluster - a
Reconfigurable Architecture for Massively Paral-
lel Systems. In G. Wolff, editor, Parcella’90, pages
143-156. Akademie-Verlag, 1990.

H. Miihlenbein, M. Schomisch, and J. Born. The
parallel genetic algorithm as function optimizer.

Parallel Computing, 17:619-632, 1991.

Ch. C. Pettey and M. R. Leuze. A theoretical
investigation of a parallel genetic algorithm. In
H. Schaffer, editor, 3rd Int. Conf. on Genetic
Algorithms, pages 398-405. Morgan-Kaufmann,
1989.

R. Tanese. Distributed genetic algorithm. In
H. Schaffer, editor, 3rd Int. Conf. on Genetic
Algorithms, pages 434-440. Morgan-Kaufmann,
1989.

G. von Laszewski. FEin paralleler genetischer
Algorithmus fur das Graph Partitionierungspro-
blem. Master’s thesis, Universitat Bonn, 1990.

G. von Laszewski and H. Muhlenbein. A paral-
lel genetic algorithm for the graph partitioning
problem. In R. Maenner and H.-P. Schwefel, edi-
tors, Parallel Problem Solving from Nature, Lec-
ture Notes in Computer Science 496, pages 165—
169. Springer-Verlag, 1991.

Q. Wang. Optimization by simulating molecular

evolution. Biol. Cybern., 57:95, 1987.

