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Abstract

Genetic programming is distinguished from other evolutionary algorithms in that it uses tree representa�

tions of variable size instead of linear strings of �xed length� The �exible representation scheme is very

important because it allows the underlying structure of the data to be discovered automatically� One

primary di�culty� however� is that the solutions may grow too big without any improvement of their

generalization ability� In this paper we investigate the fundamental relationship between the performance

and complexity of the evolved structures� The essence of the parsimony problem is demonstrated empiri�

cally by analyzing error landscapes of programs evolved for neural network synthesis� We consider genetic

programming as a statistical inference problem and apply the Bayesian model�comparison framework to

introduce a class of �tness functions with error and complexity terms� An adaptive learning method is

then presented that automatically balances the model�complexity factor to evolve parsimonious programs

without losing the diversity of the population needed for achieving the desired training accuracy� The

e�ectiveness of this approach is empirically shown on the induction of sigma�pi neural networks for solving

a real�world medical diagnosis problem as well as benchmark tasks�

Keywords� Machine learning� Tree induction� Genetic programming� Minimum description length prin�

ciple� Bayesian model comparison� Evolving neural networks�
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� Introduction

Machine learning has been a major research area since the birth of articial intelligence as a dis�

cipline �Steinbuch� ����� Samuel� ����� Nilsson� ����� Winston� ������ Learning is not only an

inalienable component of human intelligence� but it also plays an important role in constructing

high�performance application systems �Carbonell� ������ Recently� Koza introduced a new learn�

ing paradigm� called genetic programming �Koza� ����a�� which extends conventional evolutionary

algorithms �B�ack and Schwefel� ����� Goldberg� ����� M�uhlenbein� ����� in that the structures

undergoing adaptation are hierarchical computer programs instead of bitstrings� Genetic pro�

gramming has been successfully applied to learn computer programs for solving many interesting

problems in articial intelligence and articial life �Koza� ����a� Koza� ���	� Kinnear� ���	a��

As with other evolutionary algorithms� genetic programming starts with a population of ran�

domly generated individuals� Each individual is a program that� when executed� is the candidate

solution to the problem� Selection and crossover operators are used to produce increasingly t

populations of computer programs� While most evolutionary algorithms are based on chromo�

somes of xed length� genetic programming uses hierarchical structures� i�e� trees of variable size

and shape� In the most general case� the programs can be LISP S�expressions representing a

game�playing strategy� a set of production rules� a decision tree� or a neural network� The struc�

tured representation scheme is particularly well suited to problems in which the regularity of the

underlying process must be discovered from observed data�

One problem with the �exible size representation in genetic programming is that the space and

time requirements of the structures may become too great� Larger programs take more execution

time than smaller ones� when all the elementary operations take the same time� the total execution

time is proportional to the size of the program� In some applications such as synthesis of logic

circuits or neural networks� one may wish to implement the nal solutions in hardware� In this

case� larger solutions also result in higher implementation costs� In addition� as their size increases�

the programs frequently become hopelessly opaque to human understanding �Kinnear� ������ One

approach to dealing with this problem is to dene and reuse submodules� Koza suggests dening

potentially useful subroutines called automatically de�ned functions �ADF�s� during a run �Koza�

����b�� Genetic programming with automatic function denition signicantly reduces the aver�
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age structural complexity of the solutions and the computational e�ort as compared to genetic

programming without automatic function denition �Koza� ������

However� even with reusable submodules the program size may still grow without bound if

the training data is noisy or incomplete� Empirical studies report that� when their training accu�

racy is comparable� smaller solutions usually demonstrate better generalization performance than

larger solutions� Tackett� for instance� observes in his pattern classication experiments that a

high degree of correlation exists between tree size and performance
 �among the set of �pretty

good� solutions� the smallest within the set usually achieved the highest performance� �Tackett�

������ He also observed that� as the size and complexity of trees grew� a point was eventually

reached in most runs where performance dropped� He suggests that for an open�ended exploration

of problem space� parsimony may be an important factor not for aesthetic reasons or ease of anal�

ysis� but because there seems to be a bound on the appropriate size of solution trees for a given

problem� Kinnear reports that as his programs grew� it became less and less likely for them to be

general �Kinnear� ������ He questions whether there are other problems for which generalization

is inversely proportional to the program size�

In this paper we show that the problem of parsimony is ubiquitous in genetic programming from

a theoretical point of view� In Section �� we use the results from the statistics literature to shed

light on the fundamental relationship between accuracy and parsimony in genetic programming� In

Section �� the essence of the problem is demonstrated empirically when we analyze error landscapes

of programs evolved for neural network synthesis� In Section 	� a Bayesian model�comparison

method is used to develop a framework in which a class of tness measures is introduced for

dealing with problems of parsimony� We then describe an adaptive technique for putting this

tness function into practice� It automatically balances the ratio of training accuracy to solution

complexity without losing the population diversity needed to achieve a specied training accuracy�

The e�ectiveness of the method is shown in Section �� where simulation results are presented

demonstrating the induction of neural networks using noisy training data� In Section � we discuss

the relationship of this work with other tree�based machine learning methods� Section � concludes

by summarizing the results and implications of this work�
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� Genetic Programming and the Bias�Variance Problem

Many seemingly di�erent problems in articial intelligence and articial life can be viewed as

the problem of discovering a computer program that produces some desired output for particular

inputs� For instance� in visual pattern�recognition applications the input of a programA is a vector

x of features from a segmented image and each component yk of the output vector y may represent

the probability that the image belongs to category k�

The process of solving these problems can be formulated as a search for a highly t computer

program� Abest� in the whole space of possible computer programs A


A � fA�� A�� ���g� ���

The evolutionary approach di�ers from most other search techniques in that it makes a parallel

search simultaneously involving hundreds or thousands of points in the search space� Genetic pro�

gramming starts with an initial population A of randomly generated computer programs composed
of elementary functions and terminals chosen by the domain expert� The elementary functions may

be arithmetic operations� logical functions� standard programming operations� or domain�specic

functions�

In the synthesis of sigma�pi neural networks �Zhang and M�uhlenbein� ���	�� for instance� the

terminal set X consists of n input variables


X � fx�� x�� � � � � xng ���

and the elementary function set U contains sigma �S� and pi �P � units


U � fS� Pg� ���

An instance of the program consisting of the above elementary functions� i�e� a sigma�pi neural

network� is shown in Figure �� This program consists of three S units and two P units in an

embedded list structure


A � �S� �S� x� x�� �S� x� �P� x� x� x��� x� �P� x� x� x���� �	�

where Si and Pi are realizations of a sigma and pi unit at ith node� respectively� Notice that

although the number of primitive functions and terminals is nite� any arbitrarily large programs

can be generated by recursive use of them�
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Figure �
 Tree representation of a sigma�pi neural network with six inputs and one output� Each

unit has a local receptive �eld�

Each unit� Si or Pi� has its own receptive eld R�i�� the set of incoming connections from other

units or from external inputs�� Each input connection is associated with a weight value� wij�

denoting the strength of the connection from j to i� Neuron types di�er in their computation of

activation values� Sigma units� Si� compute the weighted sum of this inputs

yi � Si�x� �

���
��
�� if

P
j�R�i�wijyj � �

�� otherwise�
���

while pi units� Pi� compute the product of their weighted inputs

yi � Pi�x� �

���
��
�� if

Q
j�R�i�wijyj � �

�� otherwise�
���

The quality of each computer program in the population is measured in terms of how well

it performs in the particular problem environment� This measure is called the tness measure�

Typically� each computer program in the population is run over a number of di�erent input�output

cases so that its tness is measured as a sum or an average over their errors� The set of such cases

is called training set� D


D � f�xc�yc�gNc	� ���

where xc � X and yc � Y � The domain X and the range Y are dened by the application� The

�The bias or threshold can be treated as a weight connected to a special unit whose activation value is always ��

Thus� in the following discussion we consider the bias as just another input to the unit�
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training set is assumed to be generated from an unknown relationship �f satisfying

yc � �f �xc�� ���

If �f is stochastic� it is further assumed that the relation �f can be described by a probability density

function dened over the space X � Y 


P 
f �x�y� � P 
f �x�P 
f �yjx�� ���

where P 
f �x� denes the region of interest in the input space� and P 
f �yjx� describes the statistical
relation between the inputs and the outputs�

Given this� the goal of genetic programming is formulated as nding a program A � A that
computes the best approximation fA�x� to �f based on the training set D� This is a typical

learning�from�examples problem� In order to choose the best available approximation� we measure

the discrepancy� or loss� Q�y� fA�x�� between the target response y to a given input x and the

actual response fA�x� provided by the program� The loss function most commonly used is the sum

of squared errors


Q�y� fA�x�� � �y � fA�x��
�
� ����

Now that the similarity of genetic programming and learning from examples has been establish�

ed� we can analyze the process of genetic programming by means of the techniques developed in

statistical inference� The genetic�programming paradigm uses a training set of xed size to evolve

the programs� but the eventual goal is the minimization of the error over all possible data in the

domain� In other words� we try to minimize the average error�

E�A� �
�

N

NX
c	�

Q�yc� fA�xc��� ����

constructed on the basis of the training set D of size N � while the eventual goal of learning is to

minimize the expected value of the loss

R�A� �

Z
Q�y� fA�x��P 
f �x�y� dxdy� ����

But the joint probability distribution P 
f �x�y� � P 
f �yjx�P 
f �x� is unknown� and the only available

information is contained in the training set D� Taking Q�yc� fA�xc�� � �y � fA�x��
�� the e�ec�

tiveness of f as a predictor of y� given D and a particular x� is measured by the mean�squared
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error


E��y � fA�x�D��
� j x� D�� ����

where E��� is the expectation operator� Here we used the notation fA�x�D� instead of fA�x� to
explicitly denote the dependency of the function fA or the program A on the training data D�

Some manipulation of the formula shows that this can be decomposed into two terms �Breiman

et al�� ���	� Geman et al�� �����


E��y � fA�x�D��
�jx� D� � E��y � E�yjx���jx� D� � �E�yjx�� fA�x�D��

�� ��	�

Here E��y � E�y jx���jx� D� does not depend on the data D� nor on the estimator f � Hence the
squared distance to the regression function E�yjx�� �E�yjx�� fA�x�D��

�
� measures in a natural

way the e�ectiveness of f as a predictor of y� The mean�squared error of f as an estimator of the

regression is

ED

h
�E�yjx�� fA�x�D��

�
i
� ����

where ED represents expectation with respect to the training set D� that is� the average over the

ensemble of possible D �for xed sample size N �� This error can again be decomposed into two

terms


ED

�
�E�yjx�� fA�x�D��

�
�

� �ED�fA�x�D��� E�yjx��� � ED

�
�fA�x�D� � ED�fA�x�D���

�
�
� ����

In essence� this states that there are two di�erent kinds of errors� One is the error caused when�

on the average� fA�x�D� is di�erent fromE�yjx�� This type of error is called bias error� The second
type of error� variance error� is caused if fA�x�D� is highly sensitive to the data and far from the

regression E�yjx� even with small bias or ED�fA�x�D�� � E�yjx�� Thus either bias or variance
can contribute to poor performance� Since complex models can reduce bias error more easily �i�e�

training error can be very small� than simpler ones but will in general have large variance �i�e� the

resulting model is very specic to the data chosen for training�� the theory suggests that smaller

programs should be preferred to larger ones� regardless of concrete description forms used� In the

next section we empirically study this phenomenon by examining the error landscape�
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� Generalization vs� Complexity

In an attempt to examine the relationship between accuracy and structural complexity� we analyzed

the error landscape of sigma�pi neural networks �Zhang� ���	�� Landscape analysis techniques have

also been used to characterize the di culty of the tasks in genetic algorithms �Manderick et al��

����� and in genetic programming �Kinnear� ���	b�� We used the parity problem with input size

n � �� We rst generated a clean data set �DN of size N � ��� A noisy training set DN was then

produced from �DN by �ipping the output value of each example with �! probability�

ApproximatelyM � ����� sigma�pi networks of di�ering size with binary�valued weights were

randomly generated� Each network Ai was then trained on the noisy data DN using the error

measure


Q�DN jAi� �
NX
c	�

�yc � f�xc�Ai��
�
� ����

where yc and f�xc�Ai� are the desired and actual output value of the ith network given the input

pattern xc� The training was performed by a simple hillclimbing method in which a new weight

conguration is generated by mutating the existing conguration� After training� the generalization

performance E� �DN jAi� of the network was measured on the test set �DN of N clean examples� Two

normalized performance measures were then produced for each network


T �i� �
�

N
Q�DN jAi�� ����

G�i� �
�

N
Q� �DN jAi�� ����

The number of weights in each network is used as a complexity measure


Wi � W �Ai� �

U�i�X
j

R�j�X
k

w�
jk� ����

where the index j runs over all the units in Ai� and k runs over the incoming units to j� Perfor�

mance is depicted as a function of the network complexity Wi� For di�erent complexities �� we

compute the following values
 the average number of training errors ET ���� the average number

of generalization errors EG���� and their di�erence EG�T ���


ET ��� � avgfT �i� jWi � �� i � �� � � � �Mg� ����

EG��� � avgfG�i� jWi � �� i � �� � � � �Mg� ����
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Figure �
 E�ect of the number of weights on generalization

EG�T ��� � EG��� �ET ���� ����

The resulting tness landscape is depicted in Figure �� The graphs are drawn for the ��points

where more than ve Wi�instances were found in computing ���� and �����

Similarly we computed the average generalization performance as a function of the number of

units � and the number of layers �


Ui � U �Ai�� ��	�

ET ��� � avgfT �i� j Ui � �� i � �� � � � �Mg� ����

EG��� � avgfG�i� j Ui � �� i � �� � � � �Mg� ����

EG�T ��� � EG���� ET ���� ����

Li � L�Ai�� ����

ET ��� � avgfT �i� j Ui � �� i � �� � � � �Mg� ����

EG��� � avgfG�i� j Ui � �� i � �� � � � �Mg� ����

EG�T ��� � EG���� ET ���� ����

Figures � and 	 depict the generalization error as a function of the number of units and layers in

the network� respectively�
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Figure �
 E�ect of the number of units on generalization
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Figure 	
 E�ect of the number of layers on generalization
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Figure �
 E�ect of the number of layers on generalization in perceptrons

The results indicate the tendency for the relative generalization error to increase as the network

size grows� For the problem studied here the minimal sigma�pi network solution is very small and

thus we observe an increase of G�T from the start� But in general the curve will decrease rst until
the minimal solution complexity and then increase after that� This phenomenon is shown in Figure

� which results from a similar analysis for the perceptron architecture� i�e� the network consisting

solely of sigma units� For this architecture� the parity problem requires at least two layers of sigma

units and the best generalization is expected to be achieved with a two�layer structure� A larger

or smaller network size accompanies more generalization error�

Note� however� that if we compare some partial regions of the conguration space� this general

tendency may be violated� For instance� in Figure � the average generalization error for networks

with �� weights is larger than that of networks with ��� weights� It is not di cult to imagine that

the optimal complexity will also di�er from one problem to another� However� the overall analysis

suggests that small networks should be preferred to larger ones if no information is available about

the conguration space� conrming the principle of Occam�s Razor �Blumer et al�� ����� Zhang

and M�uhlenbein� ����a��
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� Fitness Functions for Evolving Parsimonious Programs

The Bayesian framework o�ers one approach to the bias�variance problem by formalizing the

intuitive idea behind Occam�s Razor� As described in Section �� the goal of genetic programming

is to nd a model A whose evaluation fA�x� best approximates the underlying relation �f �y� given

an input x� The goodness of the program for the dataset D is usually measured by

E�DjA� �
�

N

NX
c	�

�yc � fA�xc��
�
� ����

Considering the program as a Gaussian model of the data� the likelihood of the training data is

described by

P �DjA� �
�

Z���
e��E�DjA�� ����

where Z��� is a normalizing constant� and � is a positive constant determining the sensitivity of

the probability to the error value�

Bayes� rule states that the posterior probability of a model is


P �AjD� �
P �DjA�P �A�

P �D�
��	�

where P �A� is the prior probability of the models and

P �D� �

Z
P �DjA�P �A�dA� ����

The most plausible model given the data is then inferred by comparing the posterior probabilities

of all models� Since P �D� is the same for all models� for the purposes of model comparison� we

need only compute

P �DjA�P �A�� ����

A complex model with many parameters will have a broad distribution of priors� i�e� a small P �A�

value� and hence a small P �AjD� value� A simpler� more constrained model will have a sharper
prior and thus a large P �AjD� value� For the more complex model to be favored over the simpler
one� it must achieve a much better t to the data� Thus Bayesian model�comparison techniques

choose between alternative models by trading o� this measure of the simplicity of a model against
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the data mist� Thus it is reasonable to dene the evolutionary process of genetic programming

as the maximization of the posterior probability


Abest � arg max
Ai�A

fP �AijD�g � arg max
Ai�A

fP �DjAi�P �Ai�g � ����

Though the Bayesian inference is very useful in theory� it is not very convenient to deal with in

practice� Alternatively� we can use the model complexity� according to coding theory �Rissanen�

���	�� if P �x� is given� then its code length is given as L�P �x�� � � log�P �x��� Maximizing
P �DjA�P �A� is thus equivalent to minimizing the total code length


L�AjD� � L�P �DjA�P �A�� � � log�P �DjA�P �A�� � L�DjA� � L�A�� ����

where L�DjA� � � logP �DjA� and L�A� � � logP �A�� Here L�DjA� is the code length of the
data when encoded using the model A as a predictor for the data D� and L�A� is the length of

the model itself� This leads to the minimum description length �MDL� principle �Rissanen� �����

Fogel� ����� where the goal is to obtain accurate and parsimonious estimates of the probability

distribution� The idea is to estimate the simplest density that has high likelihood by minimizing

the total length of the description of the data


Abest � arg min
Ai�A

fL�AijD�g � arg min
Ai�A

fL�DjAi� � L�Ai�g � ����

Minimum complexity estimators are treated in this general form that can be specialized to var�

ious cases� The specialization can be done by choosing a set of candidate probability distributions

and by choosing a description length for each of these distributions� subject to information�theoretic

requirements� If we assume that the squared errors for the data points are independent and nor�

mally distributed about a zero mean� then the density function is

P �D� �
Y
i�c

P c
i �

Y
i�c

�p
�	


e�
r
c

i

��� � �	��

where rci is the ith component of the squared error for the cth example� and 

� is the variance

of the Gaussian distribution� The cost of coding using this distribution can be computed from

the optimal coding theorem� The probability mass of rci can be approximated as the product

of interval I around rci and the height P �r
c
i � under the Gaussian density function at r

c
i � that is�
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mass�rci � � P �rci �I� The code length is then


�
X
i�c

log �P c
i I� �

��
�
X
i�c

rci
�
�

� S log�
p
�	
�

��
	 � S logT�� �	��

where S is the product of the number of output components and data items� We can select an

optimal value of the variance of the Gaussian by minimizing the code length with respect to 
��

Note that S log I�� represents the complexity term� decreasing I increases the encoding accuracy�

thus increasing the code complexity�

As illustrated above� an implementation of MDL typically necessitates knowing the true under�

lying probability distribution or an approximation of it� In general� however� the distribution of

underlying data structure is unknown and the exact formula for the tness function is impossible

to obtain� The key point is that both the Bayesian model comparison and MDL principle reduced

to the general criterion consisting of accuracy and parsimony �or training error and model com�

plexity� of models that should be balanced� We propose to measure the tness of a program A

given a training set D in its most general form as

F �AjD� � FD � FA � �E�DjA� � �C�A�� �	��

where the parameters � and � control the trade�o� between complexity C�A� and tting error

E�DjA� of the program� In this framework� genetic programming is considered as a search for a
program that minimizes F �AjD�� or

Abest � arg min
Ai�A

fF �AijD�g � arg min
Ai�A

f�E�DjAi� � �C�Ai�g � �	��

The following section describes a general adaptive technique that balances � and � in unknown

environments�

� Adaptive Balancing of Accuracy and Parsimony

As suggested by the statistical theory and the generalization analysis� too small a program lacks

the learning capability while too large a program may generalize poorly on unseen data� A nite

set of search points and the maximum depth of trees are usually set as user�dened parameters in

order to control tree sizes� but an appropriate depth is not known beforehand� What we need in
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practice is a general mechanism that can �exibly control the program complexity to nd the most

parsimonious program while satisfying the desirable training accuracy�

Our basic approach is to x the error factor at each generation and to change the complexity

factor adaptively with respect to the error� Let Ei�g� denote the error dened by some criterion�

i�e�

Ei�g� � E�DjAg
i �� �		�

The training set D is assumed to be xed with size N during evolution� For later use we keep the

error of the best individuals up to the gth generation


Ebest�g� � Ei��g� �	��

i� � argmin
i
fFi�g� 
 i � �� � � � �Mg� �	��

Here Fi�g� is the total tness value of the ith individual at generation g used for reproduction of

the next population�

Let Ci�g� be the complexity value of ith individual in gth population� The complexity of the

program may be dened in several ways� For instance� in case of neural�network synthesis� shallow

networks with a small number of units and weights should be preferred to deep structures with a

large number of units and weights� The total complexity of the network can thus be dened as a

linear sum


Ci�g� � C�Ag
i � � W �Ag

i � � U �Ag
i � � L�Ag

i �� �	��

where W �Ag
i �� U �A

g
i �� and L�Ag

i � denote the number of weights� units� and layers respectively�

More generally� complexity is dened in terms of a number of factors Kr� which are weighted

according to the requirements of the application�


Ci�g� � ar
X
r

Kr�A
g
i �� �	��

At the end of each generation g we also keep the complexity of the best individual


Cbest�g� � Ci��g� �	��

i� � argmin
i
fFi�g� 
 i � �� � � � �Mg� ����

�As will be clear later� the applicability of the method is not limited by the coding scheme nor by the complexity

de�nition�
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Based on Cbest�g�� the size of the best individual at the next generation is estimated as

"Cbest�g � �� � Cbest�g� � #Csum�g�� ����

where #Csum�g� is a moving average that keeps track of the di�erence in the complexity between

the best individual of one generation and the best individual of the next


#Csum�g� �
�

�
fCbest�g�� Cbest�g � �� � #Csum�g � ��g ����

with #Csum��� � �� At the beginning of generation g� the Occam factor� ��g�� is computed as a

function of the best error Ebest�g � �� of the last generation and the estimated best size "Cbest�g�
of the current generation


��g� �

���
��

�
N�

Ebest�g���
�Cbest�g�

if Ebest�g � �� � �

�
N�

�
Ebest�g���� �Cbest�g�

otherwise�
����

where N is the size of training set� The Occam factor is then used in the tness function as

Fi�g� � Ei�g� � ��g�Ci�g�� ��	�

This equation is a realization of the general form derived from the MDL approach �	�� where � is

xed and � is expressed as a function of g


� � ��� and � � ��g�� ����

Note that ��g� depends on Ebest�g � �� and "Cbest�g��
The user�dened parameter � in ���� species the maximum training error allowed for the nal

solution� When Ebest�g� �� � �� ��g� decreases as the training error falls since Ebest�g� ��  � is
multiplied� This encourages fast error reduction at the early stages of evolution� In contrast� for

Ebest�g � �� � �� as Ebest�g� approaches � the relative importance of complexity increases due to

the division by a small value Ebest�g � ��  �� This encourages stronger complexity reduction at
the nal stages to obtain parsimonious solutions� In both cases� the constant factor �

N� cares for

the stability of this control method� The experimental results shall be given in the next section�

On the other hand� the Occam factor ��g� decreases as complexity "Cbest�g� increases for a

xed Ebest�g � ��� encouraging that once the size of the best program grows� the individuals have
increasingly higher chance of growth� This is intended to give counter e�ects to the Occam�s Razor

��



to ensure growing if necessary� This method is applicable independent of the complexity denition

since the Occam factor is controlled by the ratio of the current complexity to the estimated best

complexity� not by the absolute value�

To see how the selection works based on this tness evaluation scheme� we consider the tness

di�erence of two individuals� i and j� for Ebest�g � �� � �


jFi�g� � Fj�g�j � jEi�g� �Ej�g� � ��g��Ci�g�� Cj�g��j � ����

There are nine possible relationships between Fi�g� and Fj�g� as listed in the rst column of Table

�� Because the objective is to minimize the tness� we are interested in the cases in which Fi�g�

is less than Fj�g� and i is selected against j� There are four of them as marked in the rightmost

column of the table�

� Case �
 Ei�g�  Ej�g� and Ci�g�  Cj�g�� This is a trivial case� if i has less error and lower

complexity than j� Fi�g� will be less than Fj�g��

� Case �
 Ei�g�  Ej�g� and Ci�g� � Cj�g�� When both have the same complexity� i must

have less error than j in order for Fi�g� to be less than Fj�g��

� Case �
 Ei�g� � Ej�g� and Ci�g�  Cj�g�� When the errors of both individuals are the same�

the complexity of i must be lower than that of j�

� Case 	
 Ei�g� � Ej�g� and Ci�g�  Cj�g�� Although individual i has larger error than j�

the tness of i can be smaller than that of j if the complexity of i is much smaller than the

complexity of j�

The last case is worthy of more discussion� Here we have Ei�g� � Ej�g� and Ci�g�  Cj�g� and

want to study the condition for Fi�g�  Fj�g�� which can be rewritten as

��g��Cj�g� �Ci�g�� � Ei�g� �Ej�g�� ����

By substituting ���� for Ebest�g � �� � � into this inequality� we get

Cj�g� � Ci�g� � N� �Ebest�g � �� � "Cbest�g� � �Ei�g� �Ej�g��� ����
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if then additional condition reference

Ci	g
 � Cj	g
 Fi	g
 � Fj	g
 case �

Ei	g
 � Ej	g
 Ci	g
 � Cj	g
 Fi	g
 � Fj	g
 case �

Ci	g
 � Cj	g
 Fi	g
 � Fj	g
 Ej	g
� Ei	g
 � �	g
	Ci	g
� Cj	g



Fi	g
 � Fj	g
 Ej	g
� Ei	g
 � �	g
	Ci	g
� Cj	g



Ci	g
 � Cj	g
 Fi	g
 � Fj	g
 case �

Ei	g
 � Ej	g
 Ci	g
 � Cj	g
 Fi	g
 � Fj	g


Ci	g
 � Cj	g
 Fi	g
 � Fj	g


Fi	g
 � Fj	g
 Ei	g
� Ej	g
 � �	g
	Ci	g
� Cj	g

 case 

Ci	g
 � Cj	g
 Fi	g
 � Fj	g
 Ei	g
� Ej	g
 � �	g
	Ci	g
� Cj	g



Fi	g
 � Fj	g
 Ei	g
� Ej	g
 � �	g
	Ci	g
� Cj	g



Ei	g
 � Ej	g
 Ci	g
 � Cj	g
 Fi	g
 � Fj	g


Ci	g
 � Cj	g
 Fi	g
 � Fj	g


Table �
 E�ect of error and complexity terms on �tness values

Let Ebest�g � �� � e�g��N � where N is the number of training examples and e�g� is the number of

mismatched examples for the best individual in generation g� Then we have

Cj�g� �Ci�g� � e�g� �N � "Cbest�g� � �Ei�g� �Ej�g��� ����

In case of Ei�g� � Ej�g� � ��N � i�e� ith program correctly classies one more data than the jth�

the complexity reduction must satisfy the relation

Cj�g� � Ci�g� � e�g� � "Cbest�g�� ����

This means that a complexity reduction of at least e�g� � "Cbest�g� is required to compensate for a
loss of one more misclassication� The overall e�ect is to improve the probability of generalization

accuracy with possible loss of training errors� where the error tolerance interval is specied by the

user�dened parameter ��
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	 Empirical Studies

��� Application Domains

Simulation has been performed on the synthesis of sigma�pi neural networks as described in Sec�

tion �� While their necessity and usefulness have been recognized earlier in the neural network

community �Durbin and Rumelhart� ����� Feldman and Ballard� ����� Rumelhart et al�� ������

the pi�units have not been long used in practice� One main reason was the di culty of training�

While some special class of networks consisting solely of pi units can be trained by the gradient

method� either the architecture should be very simple �Giles and Maxwell� ����� or the solution

involves the manipulation of complex�valued expressions �Durbin and Rumelhart� ������ Another

problem in using pi units is the combinatorial explosion of the number of terms �Amari� ������ The

number of parameters necessary for specifying an order k neuron is rk �
Pk

i	 nCi� where n is the

total number of inputs and nCm are the binomial coe cients� We have used genetic programming

to construct a higher�order neural network whose topology� size� and node type are adapted to the

particular problem� The preliminary results have been reported in �Zhang and M�uhlenbein� ����b�

Zhang and M�uhlenbein� ���	�� in which a small �constant� Occam factor was used in the tness

function�

Two data sets are used for the experiments� The one is an articial data set generated with

noise from the parity function� The other is real�world data consisting of clinical measurements

for �	� di�erent persons� The goal here is to diagnose a patient by the blood test measurements

whether his liver is in disorder or not� Each data item constitutes the record of a single male

individual and consists of six input values as listed in Table �� The rst � variables of the input are

all blood tests which are thought to be sensitive to liver disorders that might arise from excessive

alcohol consumption� The sixth input variable is the number of half�pint equivalents of alcoholic

beverages drunk per day� The original data values �Murphy and Aha� ���	� were normalized into

the interval ���� �� before being used to train the networks�
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attribute name description

x� mcv mean corpuscular volume

x� alkphos alkaline phosphotase

x� sgpt alamine aminotransferase

x� sgot aspartate aminotransferase

x� gammagt gamma�glutamyl transpeptidase

x� drinks alcoholic beverages drunk per day

Table �
 Attribute information in blood tests for liver diagnosis

��� Method

The algorithm is summarized in Figure �� At the start� the initial population A��� ofM networks

is created at random� The random initialization includes the type and receptive eld of units� the

depth of the network� and the weight values� For the gth population� the tness of each member

network� Fi�g�� is evaluated by the adaptive tness function in Equation ��	��

Each member of the population undergoes a hillclimbing search in which a xed number of

local search steps are performed while the structure is xed� Each local search step consists of a

random modication of the weight values� followed by its tness evaluation� and the acceptance

or rejection of new conguration� The new conguration is accepted as the current one if the

new individual is tter than the current one� Otherwise the previous one is used as the current

individual� Hillclimbing turned out to be useful from our previous observation that once the average

size of individuals grows� it gets more di cult to nd a smaller solution� although the solutions

exist in the smaller subspace�

The best �! of the hillclimbed population of generation g are selected into the mating pool

B�g�� where � � ��� �� is the truncation threshold �M�uhlenbein and Schlierkamp�Voosen� ������
The �g � ��th generation of size M is produced by applying crossover and mutation operators to

the parent networks in the mating pool B�g�� New populations are generated until the variance of
tness values falls below the specied limit Vmin or the generation number reaches gmax�

The crossover operator selects two parents� Bi and Bj at random� and exchanges their subtrees
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procedure BGP�M � � � Vmin� gmax�

population size
 int M

truncation rate
 real �

tness variance
 real Vmin� V �g�

generation
 int gmax� g

tness values
 real Fi

population
 array A � �A�� A�� ���� AM �

mating pool
 array B � �B�� B�� ���� B��M �

proc Initialize��� Evaluate��� Hillclimb��� Select��� Mate��

g	 �

A��� 	 Initialize�M �

while ��g � gmax� and �V �g� � Vmin�� do

Fi�g� 	 Evaluate�Ai�g�� 
i � f�� ����Mg
Ai�g� 	 Hillclimb�Ai�g�� 
i � f�� ����Mg
B�g� 	 Select�A�g�� � �
A�g � �� 	 Mate�B�g�� M � �fAbest�g�g � elitist
g 	 g � �

endwhile

endprocedure

Figure �
 The top�level structure of the algorithm
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parents

o�spring

Figure �
 Architecture adaptation by crossover

to create two o�spring B�
i and B

�
j �see Figure ��� In this way� the size� depth and receptive eld

shape of the network architecture are adapted� In Figure �� for example� the number of units of

parent Bi has increased by replacing one of its pi�subtree with the sigma�sigma�pi�subtree of parent

Bi� The weights are adapted by repeatedly applying a mutation operator to each individual� The

mutation operator also changes the index for the input units and the neuron type� For instance�

a sigma unit is mutated to a pi unit and vice versa� This �exibility gives the chance of evolving

conventional neural network architectures as well as networks consisting of any combinations of

sigma and pi units�

��� Simulation Results

The performance of the method for solving the parity problem of � inputs is shown in Figure �� The

training set consists of �	 examples which were chosen randomly from �� � ��� data points and

inserted noise by changing the output value with �! probability� The generalization performance
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of the best solution in each generation was measured by the complete data set of ��� noiseless

examples� The population was initialized for every individual to contain sigma and pi units with

��! probability each� The depth of initialized network was limited to �� The truncation rate was

��!� The population size and the maximum generation limit were M � 	� and gmax � ���� The

parameter � was set to ���� requiring the training error should be at most ��� or� in other words�

at least ��! of the training examples are desired to be learned correctly�
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Figure �
 Evolution of �tness value and network size of the best individuals

Figure � �left� shows the performance evolution of the best individuals in each generation� in

terms of training and generalization errors� The stability of the accuracy�parsimony balancing can

be seen by analyzing the error portion of the total tness depicted in Figure �� The graph shows

that until the error falls below � � ��� at generation ��� the error term dominates the tness�

while after that point the relative domination of error term goes down under ��� to make stronger

complexity reduction� though� without risking too much error increase�

The comparison of the tness and network size conrms that the network size change� i�e�

growing or pruning� has a very close relationship with the training error reduction� For instance�

from generation � to � during which the training error was reduced from ���� to ����� the network

size increased from �������� �layers�units�weights� to 	�������� Other examples of growing and

pruning are listed in Table ��
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Figure �
 Error portion of the total �tness over generations

Values at generation g Values at generation g � � Comments

g Ebest�g� Cbest�g� Ebest�g � �� Cbest�g � ��

� ���� �������� ���� 	������� growing

�� ���� 	������� ���� ������� pruning

�� ���� ������� ���� ������� pruning

�� ���� ������� ���� ������� growing

�� ���� ������� ���� ��	���	� growing

�� ���� �������� ���� �������	 pruning

Table �
 Error update versus complexity change

�	
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Figure ��
 Error and complexity evolution of the best individuals for the medical data

The close relationship between complexity and performance of the network has also been ob�

served for the medical data� as shown in Figure ��� One di�erence was the fact that here a larger

network was required than for solving the parity problem� Also shown in the gure is the average

tness over the population� The average tness was measured two times for each generation� i�e�

before and after hillclimbing� Thus the e�ect of hillclimbing can be observed in the graph� Hill�

climbingwas especially helpful to nd good weight combinations when the network architecture was

suitable� For this real�life data� the training performance after ��� generations was approximately

��! and the generalization accuracy was about ��! less than this value� The population size was

���� Though this performance is not appropriate for real application� there is still possibility for

further improvement as the generation goes on� Using the genetic programming paradigm without

having a complexity factor was almost impossible for this data� because of the rapid growth of the

solution size� This indicates another practical reason for parsimonious solutions�

The e�ect of Occam�s Razor was studied by comparing the performance of the runs with the

adaptive Occammethod ��	� with those of the baseline tness function Fi�g� � Ei�g� � E�DN jAi��

Both methods used the same parity data as before� For each method� �� runs were executed to

observe the complexity of the best solution and its training and generalization performance�

The rst three bar graphs in Figure �� compare the average network size measured at the

gmaxth generation� The corresponding learning and generalization performance of both methods
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Figure ��
 Comparison of performance with and without complexity penalty

are also compared in the next two graphs� The results show that applying the adaptive Occam

method achieves signicantly better generalization performance� as was expected by the theory and

landscape analysis� Whereas the solution size in the baseline method increased without bound�

controlling the Occam factor as described in the last section could prune inessential substructures

to get parsimonious solutions but without losing the training performance� It is interesting to note

that the evolution with Occam�s Razor achieved better learning performance than without it� This

is because the search with complexity penalty focuses more on a smaller search space while the

search without it may explore too large a space to be practical� Since the evolution time is limited

to the maximum of gmax generations� using Occam�s Razor can nd a solution faster than without

it�

We also measured the convergence time to local minima up to gmax generations� i�e� the total

learning time until the generation from which there is no improvement in the size and performance

��



of the best individual� Figure �� shows the convergence time as measured in millions of evaluations

of arithmetic operations associated with calculating activation values of neural units� Compared

with the standard method� the adaptive Occam method converged more than three times faster

for this problem�


 Discussion

The minimum description length principle has also been used in other tree�based learning algo�

rithms such as CART �Breiman et al�� ���	� and ID� �Quinlan and Rivest� ������ For the induction

of parsimonious decision trees� both CART and ID� use a two step process� In the rst step� tree

size only grows by starting with a single leaf node and expanding the leaf nodes until the tree

perfectly classies the given training set or until further growing is impossible� During the second

step� the tree is repeatedly pruned back by replacing decision �nonterminal� nodes by leaves� when�

ever the total description length is reduced� The total description length is dened as the sum of

the tree coding length and the error coding length in bits� Note that in this two step induction�

the tree complexity is considered only in the pruning phase� This is equivalent to a strategy of

rst reducing the error and then reducing the complexity�

One fundamental di�erence between the genetic programming approach �including our method�

and conventional tree�induction methods is that a population of trees is used instead of a single tree�

In the genetic programming approach� pruning and growing are interleaved during the learning

process� This is primarily done by the crossover operator� which generates new trees that can be

larger or smaller than their parents�

Iba et al� have used the MDL principle in genetic programming to evolve GMDH networks

�Ivakhnenko� ����� and decision trees �Iba et al�� ����� Iba et al�� ���	�� As in ID�� the code

length �CL� is dened as the total sum of description lengths


CLi�g� � E�DjAg
i � �C�Ag

i �� ����

where C�Ag
i � is the description length for the tree A

g
i and E�DjAg

i � is the coding length for the

classication error of the tree for the training set D� The description lengths are dened with
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respect to a specic encoding scheme chosen by the author� Due to the unknown range� of the

total coding length� a scaling window of size Wsize is used to determine a normalization factor�

CLmax�g�� CLmax�g� is dened as the largest code length during the last Wsize generations� The

tness value of the tree is then dened as

Fi�g� � CLmax�g�� CLi�g�� ����

Notice that the tness is dened here as simply the sum of error and complexity costs� followed

by a normalization of the total costs� Therefore� the complexity value C�Ag
i � is as important as the

error value E�DjAg
i � in determining the total tness value of an individual� This works perfectly

when the coding scheme exactly re�ects the true probability distribution of the environment� One

possible drawback in this implementation of the MDL principle in genetic programming is the lack

of �exibility in balancing accuracy with parsimony in unknown environments� That is� there is

a risk that the network size may be penalized too much� resulting in premature convergence in

spite of other diversity�increasing measures� such as a large crossover rate� In fact� the authors

remark that this kind of MDL approach should be used carefully when evolving general programs

with genetic programming �Iba et al�� ���	�� Note also that this strategy is far from the two step

approach of ID�� taken to ensure parsimonious solutions without losing good performance�

Premature convergence in the direct MDL approach can be avoided by introducing a small

Occam factor ��g�


Fi�g� � Ei�g� � ��g�Ci�g�� ����

where Ei�g� and Ci�g� are the error and complexity values normalized separately� and ��g� is a

constant expressed as a function of the training set size �Zhang and M�uhlenbein� ����a� Zhang and

M�uhlenbein� ����b�� In this MDL approach� the complexity cost in�uences the selection process

only when the candidates for selection have comparable performance� That is� a tree wins the

selection only if its error is smaller than that of its competitors� or its error is the same as its

competitors but its size is smaller� Note that this is an evolutionary equivalent of the strategy

of rst reducing the error and then reducing the complexity� Experimental evidence shows this

�The range of the coding length varies from �� to � due to the use of logarithms in calculating the length in

bits�
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method is robust and e�ective for a wide class of tasks� However� this balancing mechanism is very

conservative and can still be speeded up by making the control of the Occam factor more �exible�

The adaptive Occam method described in the present paper improves the xed Occam approach

by changing the ratio of error to complexity in the course of the run� In early stages of learning�

a strong increase in tree complexity is allowed by keeping the Occam factor small� which usually

results in fast error reduction� The small Occam factor also results in robust convergence to the

desired training accuracy� since premature convergence is avoided due to increased diversity� In

later stages� i�e�� after the desired level of training performance is achieved� the adaptive Occam

approach enforces a strong complexity penalty� which encourages parsimony� Overall� this has

the e�ect of increasing generalization performance without getting stuck in local minima due to

premature convergence� The control of the phase transition is not di cult since it is dened by

the desired training accuracy which the user requires� Though other MDL�based tree induction

methods also reward parsimony� the adaptive Occam approach is di�erent in that it dynamically

balances error and complexity costs�

While proposed in a di�erent context� the adaptive tness function presented in this paper has

some similarity in spirit to competitive �tness functions �Angeline and Pollack� ������ Standard

tness functions return the same tness for an individual regardless of what other members are

present in the population� demanding an accurate and consistent tness measure throughout the

evolutionary process� While the global accuracy can be easily computed when evolving solutions

for many simple problems� it is often impractical for problems with greater complexity� In con�

trast� competitive tness functions evaluate the tness values depending on the constituents of

the population� Angeline argues that competitive tness functions provide a more robust training

environment than independent tness functions�

A nal comment is in order on the applicability of this approach to the more general classes

of programs that can be developed by genetic programming� The general method of balancing

accuracy and parsimony can be used for the genetic induction of other classes of tree�structured

programs as well� This is because the error and complexity values are normalized separately and the

same adaptive balancing mechanism can be used for di�erent denitions of error and complexity�

��



� Conclusion

We have investigated the theoretical relationship between the complexity of a solution and its

generalization ability in genetic programming� An analysis of the tness landscape was made in

the context of inferring sigma�pi neural networks from data� The comparison of learning and

generalization performance as a function of network size suggests the e�ectiveness of minimal�

complexity approaches�

We presented an adaptive method that obtains parsimonious solutions while guranteeing the

specied minimal training accuracy with a high probability� The method implements a kind of

dynamic search where the focus of attention depends on the structure of the current and past

tness landscapes� i�e�� the distribution of error and complexity of the individuals in the recent

populations� Whereas pruning is always encouraged by the non�zero Occam factor� the adaptive

tness function simultaneously promotes growing if it is necessary for signicant error reduction�

Though our experiments were performed in the context of neural network synthesis� the underly�

ing principle of balancing accuracy with parsimony applies to all genetic programming applications

in which the structural complexity� as well as the structures themselves� should be optimized on

the basis of noisy or incomplete data�
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