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Simulating evolution as seen in nature has been identified as one of the
key computing paradigms for the new decade. Today evolutionary algo-
rithms have been successfully used in a number of applications. These in-
clude discrete and continuous optimization problems, synthesis of neural
networks, synthesis of computer programs from examples (also called ge-
netic programming) and even evolvable hardware. But in all application
areas problems have been encountered where evolutionary algorithms
performed badly. Therefore a mathematical theory of evolutionary al-
gorithms is urgently needed. Theoretical research has evolved from two
opposed end; from the theoretical approach there are theories emerging
that are getting closer to practice; from the applied side ad hoc theories
have arisen that often lack theoretical justification.

In this chapter we concentrate on the analysis of evolutionary algo-
rithms for optimization. The first section introduces the most popular
algorithm, the simple genetic algorithm. This algorithm has many de-
grees of freedom, especially in the recombination scheme used. We show
that all genetic algorithms behave very similar, if recombination is done
without selection a sufficient number of times before the next selec-
tion step. This conceptual algorithm we approximate by the Univariate
Marginal Distribution Algorithm UM D A, which is analyzed in Section 2.
We compute the difference equation for the univariate marginal distribu-
tions under the assumption of proportionate selection. This equation has
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been proposed in populations genetics by Sewall Wright as early as 1937
(1970). This is an independent confirmation of our claim that UM DA
approximates any genetic algorithm. Using Wright’s equation we show
that UM D A solves a continuous optimization problem. The function to
be optimized is given by the average fitness of the population.

Proportionate selection is far too weak for optimization. This has been
recognized very early in breeding of livestock. Artificial selection as done
by breeders is a much better model for optimization than natural selec-
tion modelled by proportionate selection. Unfortunately an exact mathe-
matical analysis of efficient artificial selection schemes seems impossible.
Therefore breeders have developed an approximate theory, using the
concepts of regression of offspring to parent, heritability and response to
selection. This theory is discussed in Section 3. At the end of the section
numerical results are shown which show the strength and the weakness
of UM DA as a numerical optimization method.

UM D A optimizes very efficient some difficult optimization problems,
but it fails on some simple problems. For these problems higher order
marginal distributions are necessary which capture the nonlinear de-
pendency between variables. In Section 4.1 UM DA is extended to the
Factorized Distribution Algorithm FDA. We prove convergence of the
algorithm to the global optima if Boltzmann selection is used. The the-
ory of factorization connects F'DA with the theory of graphical models
and Bayesian networks. We derive a new adaptive Boltzmann selection
schedule SDS using ideas from the science of breeding.

In Section 5.1 we use results from the theory of Bayesian networks for
the Learning Factorized Distribution Algorithm LF DA, which learns a
factorization from the data. We make a preliminary comparison between
the efficiency of FDA and LFDA.

In Section 6 we describe the system dynamics approach to optimiza-
tion. The difference equations obtained for UM DA are iterated until
convergence. Thus the continuous optimization problem is mathemat-
ically solved without using a population of points at all. We present
numerical results for three different system dynamics equations. They
consists of Wright’s equation, the diversified replicator equation and a
modified version of Wright’s equation which converges faster.

In the final section we classify the different evolutionary computation
methods presented. The classification criterion is whether a microscopic
or a macroscopic model is used for selection and/or recombination.
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1 Analysis of the Simple Genetic Algorithm

In this section we investigate the standard genetic algorithm, also called
the Simple Genetic Algorithm (SGA). The algorithm is described by
Holland (1975/1992) and Goldberg (1989). It consists of

e fitness proportionate selection
e recombination/crossover
e mutation

Here we will analyze selection and recombination only. Mutation is con-
sidered to be a background operator. It can be analyzed by known
techniques from stochastics (Mithlenbein & Schlierkamp-Voosen, 1994;
Miihlenbein, 1997).

There have been many claims concerning the optimization power of
SGA. Most of them are based on a rather qualitative application of the
schema theorem. We will show the shortcomings of this approach. Our
analysis is based on techniques used in population genetics. The analysis
reveals that an exact mathematical analysis of SGA is possible for small
problems only. For a binary problem of size n the exact analysis needs the
computation of 2" equations. But we propose an approximation often
used in population genetics. The approximation assumes that the gene
frequencies are in linkage equilibrium. The main result is that any genetic
algorithm can be approximated by an algorithm using n parameters only,
the univariate marginal gene frequencies.

1.1 Definitions

Let x = (z1,-..,T,) denote a binary vector. For notational simplicity
we restrict the discussion to binary variables z; € {0,1}. We use the
following conventions. Capital letters X; denote variables, small letters
x; assignments.

Definition 1.1. Let a function f : X — R2° be given. We consider the
optimization problem

(1.1) Xopt = argmax f(x)
We will use f(x) as the fitness function for the SGA. We will investigate

two widely used recombination/crossover schemes.

Definition 1.2. Let two strings X and 'y be given. In one-point crossover
the string z is created by randomly choosing a crossover point 0 <[l <n
and setting z; = x; for i <l and z; = y; for i > 1. In uniform crossover
z; is randomly chosen with equal probability from {x;,y;}.
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Definition 1.3. Let p(x,t) denote the probability of x in the population
at generation t. Then pi(wi,t) = >, x,_,, P(X,t) defines a univariate
marginal distribution.

We often write p;(x;) if just one generation is discussed. In this notation
the average fitness of the population and the variance is given by

) = Spx0fx)
Vi) = Ypxt) (Fx) - F(1)

2

The response to selection R(t) is defined by

(1.2) R(t) = f(t+1) - f(t)
1.2 Proportionate Selection

Proportionate selection changes the probabilities according to

— /(@)
(1.3) p(x,t+ 1) = p(x,t) D)
Lemma 1.1. For proportionate selection the response is given by
_V®
(1.4) R(t) = )
Proof: We have
_ f2a) V)
(1.5) R = o ple 6 5 = 10 = 1

O

With proportionate selection the average fitness never decreases. This is
true for every rational selection scheme.

1.3 Recombination

For the analysis of recombination we introduce a special distribution.

Definition 1.4. Robbins’ proportions are given by the distribution ©
n

(1.6) w(x, t) = Hpi(:ni,t)
i=1

A population in Robbins’ proportions is also called to be in linkage equi-
librium.

Geiringer (1944) has shown that all reasonable recombination schemes
lead to the same limit distribution.
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Theorem 1.1 (Geiringer). Recombination does not change the uni-
variate marginal frequencies, i.e. p;(z;,t + 1) = p;(x;,t). The limit dis-
tribution of any complete recombination scheme is Robbins’ proportions
m(x).

Complete recombination means that for each subset S of {1,...,n},
the probability of an exchange of genes by recombination is greater than
zero. Convergence to the limit distribution is very fast. We will prove
this for n = 2 loci.

Theorem 1.2. Let D(t) = p(0,0,t)p(1,1,t) —p(0,1,t)p(1,0,t). If there
is mo selection then we have for two loci and uniform crossover
(1.7) D(t) = (=) (p(x,t) = pr(@1,0)ps (x2,0)).

|z|?> denotes the number of ones in x. p;(x;,0) denotes the univariate
marginal frequency at t = 0. The factor D(t) is halved each generation

(1.8) Dt +1)= %D(t).

Proof: Without selection the univariate marginal frequencies are inde-
pendent of t, because in an infinite population a recombination operator
does not change them. Then from

p(L,1,¢) — pi(1,0)p2(1,0)
=p(1,1,t) — (p(1,0,¢) + p(1,1,8)) (p(0,1,¢) + p(1,1,t))
= p(]-a lat) - p(07 lat)p(]-aoat) - p(17 lat)(]' - p(oaoat)) = D(t)

we obtain Equation 1.7 for x = (1,1). The other cases are proven in the
same way.

The gene frequencies after recombination are obtained as follows. We
only consider p(1,1,t). The probability of p(1,1,t + 1) can be com-
puted from the probability that recombination generates string (1,1).
The probability is given by

p(1,1,t+1) =p(1,1,¢)- (3p(0,0,¢) + p(0,1,¢) + p(1,0,t) + p(1,1,1))
+ %p(O,l,t)p(l,O,t)
=p(1,1,t) — +(p(1,1,1)p(0,0,t) — p(0,1,t)p(1,0,1))
=p(1,1,¢) + (—1)"“2“%0(75).

By computing D(t+1) Equation 1.8 is obtained. O

We will use as a measure for the deviation from Robbins’ proportions
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the mean square error DSQ(#)
(L9) DSQ(t) = Y (p(x.1) — pa(1)pa(a))”.

X

From the above theorem we obtain

Corollary 1.1. For two loci the mean square error is reduced each step
by one fourth

DSQ(t+1) = iDSQ(t)

For more than 2 loci the equations for uniform crossover and one-point
crossover get more complicated. Uniform crossover converges faster to
linkage equilibrium, because it mixes the genes much more than one-
point crossover.

In a finite population linkage equilibrium cannot be exactly achieved.
Let us take the uniform distribution as example. Here linkage equilibrium
is given by p(x) = 27™. This value can only be obtained if the size of
the population is substantial larger than 2™. In a finite population we
observe first a fast decrease of linkage disequlibrium. Then DSQ slowly
increases due to stochastic fluctuations by genetic drift. Ultimately the
population will consist of one genotype only. Genetic drift has been
analyzed by Asoh and & Miihlenbein (1994b). It will not be considered
here.

1.4 Selection and Recombination

We have shown that the average f(t) never decreases after selection and
that any complete recombination scheme moves the genetic population
to Robbins’ proportions. Now the question arises: What happens if re-
combination is applied after selection. The answer is very difficult. The
problem still puzzles populations genetics (Nagylaki, 1992).

Formally the difference equations can be easily written. Let a recom-
bination distribution R be given. R, ,. denotes the probability that y
and z produce z after recombination. Then

(1.10) p(x,t+1) = Ry o’ (y)p’(2)

p®(x) denotes the probability of string = after selection. For n loci the
recombination distribution R consists of 2" x 2" parameters. Recently
Christiansen and Feldman (1998) have written a survey about the math-
ematics of selection and recombination from the viewpoint of population
genetics. A new techniques to obtain the equations has been developed
by Vose (1999). In both frameworks one needs a computer program to
compute the equations for a given fitness function.
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We discuss the problem for a special case only, uniform crossover for
n = 2 loci.

Theorem 1.3. For proportionate selection and uniform crossover the
gene frequencies obey the following difference equation
fx) 241 1 Ds(t)
(1.11) p(x,t+1) = ——p(x,t) + (=) 22
f(®) 2 ft)?
|x|? denotes the number of ones in x. f(t) = > p(x,t)f(x) is the av-
erage fitness of the population; and Ds(t) is defined as
- f(07 l)f(]-7 0)p(17 07 t)p(oa ]-7 t)
Proof: For proportionate selection the gene frequencies p®(x,t) after
selection are given by
f(x)
p(x,t) = = =p(x,1).
f(t)
Now we pair randomly between the selected parents and count how
often genotype x arises after uniform crossover. Taking x = (0,0) as an
example, and computing the probabilities of mating, we obtain

p(0,0,t+1) =
1
p0.0.0 (0,00 470,10+ 2 (1L0.0 + 31,10

1
+ §ps (07 ]-7 t)ps(]-a 07 t)

Using the fact that p*(0,0,t) + p*(0,1,t) + p*(1,0,¢) + p(1,1,t) = 1
we obtain the theorem for x = (0,0). The remaining equations are
obtained in the same manner. O

A mathematical analysis of the mathematical properties of n loci sys-
tems is difficult. For a problem of size n we have 2™ equations. Further-
more the equations depend on the recombination operator used! If the
gene frequencies remain in linkage equilibrium, then only n equations are
needed for the marginal frequencies. Thus the crucial question is: Does
the optimization process gets worse because of this simplification? The
answer is no. We provide evidence for this statement by citing a the-
orem from (Miihlenbein, 1997). It shows that the univariate marginal
frequencies are the same for all recombination schemes if applied to the
same distribution p(x, t).

Theorem 1.4. For any complete recombination/crossover scheme used
after proportionate selection the univariate marginal frequencies are de-
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termined by

(1.13) pent+)= 3 f%

Proof: After selection the univariate marginal frequencies are given by

Pan= > pe= > %'

Now the selected individuals are randomly paired. Since complete re-
combination does not change the allele frequencies, these operators do
not change the univariate marginal frequencies. Therefore

pi(zi,t + 1) = pj (z;,1).

X‘Xi::ti

x|Xi:mi x|Xi:mi

1.5 Schema Analysis Demystified

Many of the more intuitive arguments about the behavior of genetic al-
gorithm are based on the analysis of ”schemata” and their evolution in a
population. The theory has been developed by Holland (1975/1992). By
using probability distributions and an ideal schema equation we demon-
strate by a simple example that the more intuitive conclusions about the
proliferation of schemata can be misleading. Our analysis is based on an
exact solution of the probability distribution for proportionate selection.

Definition 1.5. Let p(x,t) denote the probability of x in the population
at generation t. Let X3 = (Ts,,...,%s;) C{z1,...,2n}. Thus x5 denotes
a subvector of x defined by the indices s1,...,s;. Then the probability of
schema H(s) is defined by

(114) p(H(S),t) = Z p(Xat)

X[ X;=x,

The summation is done by fixing the values of xs. Thus the proba-
bility of a schema is just the corresponding marginal distribution p(xy).
If x5 consists of a single element only, we have a univariate marginal
distribution.

SGA uses fitness proportionate selection, i.e. the probability of x being
selected is given by

’(x,t) = p(x @
(1.15) ) = x2S

ft) = X, p(x,t)f(x) is the average fitness of the population. Let
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us now assume that we have an algorithm which generates new points
according to the distribution of selected points, i.e.

f(x)
f#)
p(x,t+ 1) can be seen as the ideal probability distribution of SGA.

Definition 1.6. The fitness of schema H(s;) is defined by

1.1 H(s;),t) = M X
(1.17) f(H(s:),1) Xgms IO
Theorem 1.5 (Schema Theorem). The probability of schema H(s)
is given by
(118) (), 1) = (G5, ) 00

Holland ((1975/1992) Theorem 6.2.3) computed for SGA (a genetic
algorithm with recombination and mutation) an inequality
f(H(s),t)

f(®)

0 is a small factor. The inequality complicates the analysis. Equa-
tion (1.17 is obviously the ideal starting equation for Holland’s schema
analysis.

The mathematical difficulty of using the inequality (1.19) to estimate
the distribution of schemata lies in the fact that the fitness of a schema
depends on p(x,t), i.e the distribution of the genotypes of the population.
This is a defining fact of Darwinian natural selection. The fitness is
always relative to the current population. To cite a proverb: the one-
eyed is the king of the blinds.

Thus an application of the inequality (1.19) is not possible without
computing p(x,t). Goldberg (1989) circumvented this problem by as-
suming

(1.19) p(H(s),t+1) > (1 - 08)p(H(s, 1))

(1.20) p(H(s),t) > (1+¢)f(t)

With this assumption we estimate p(H(s),t) > (1 + ¢)'p(H(s),0).
But the assumption can never be fulfilled for all ¢. When approaching
an optimum, the fitness of all schemata in the population will be only
1 £ € away from the average fitness. Here proportionate selection gets
difficulties.

The typical folklore which arose from the schema analysis is nicely
summarized by Ballard ((1997), p.270). He is not biased towards or
against genetic algorithms. He just cites the commonly used arguments:
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e Short schemata have a high probability of surviving the genetic
operations.

e Focusing on short schemata that compete shows that, over the short
run, the fittest are increasing at an exponential rate.

e Ergo, if all of the assumptions hold (we cannot tell whether they
do, but we suspect they do), GAs are optimal.

We will not investigate the optimality argument, because we will show

that the basic conclusion of exponential increasing schemata does not
hold.

It turns out that equation 1.16 for proportionate selection admits an
analytical solution.

Theorem 1.6 (Convergence). The distribution p(x,t) for proportion-
ate selection is given by
p(x,0)f(x)"

1.21 p(x,t) = LT
(121 Ge.8) >, 2y, 0) f(¥)!
Let M be the set of global optima, then

: Yim xeM
1.22 lim p(x,t) =
(122 Jim p(, 1) {0 "

Proof: The proof is by induction. The assumption is fulfilled for
t =1. Then

x,0)f(x)i+!
Pt +1) = Zi(p(y,) éc)(f ()Y)t+1
PO )
f@) Zy p(y70)1}((¥))t~f(y)
a0
>, Py, 0) f(y)r+
Let Xpmar € M and f(x) < f(Xmaz). Then

p(x,t)  p(x,0)f(x)"
p(Xmaz,t) a p(xmamao)f(xmaz)t -0

O

This shows that our algorithm is ideal in the sense that it even con-

verges to the set of global optima. Equation 1.21 was already used by
Goldberg and Deb ((1991)).

By using equation (1.21) we can make a correct schema analysis. We

compute the probabilities of all schemata. We just discuss the interesting

case of a deceptive function. We take the 3-bit deceptive function defined
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FIGURE 1 Evolution of some schemata
by
decep(x) = 0.9 — 0.1(z1 + x2 + x3)

—0.7(z122 + 223 + T123) + 2.521 2223

The function is called deceptive because the global optimum (1,1,1)
is isolated, whereas the local optimum (0,0, 0) is surrounded by strings
of high fitness. We now look at the behavior of some schemata.

Definition 1.7. A schema is called optimal if its defining string s is
contained in an optimal string.

In our example H(X; = 1) and H(X; = X = 1) are optimal
schemata. They are displayed in Figure 1. We see that the probability
of the optimal schema p(H(X; = 1) decreases for about 8 generations,
then it increases fairly slowly. This behavior is contrary to the simple
interpretation of the evolution of schemata. Schema H(X; = X, = 1)
decreases even dramatically at the first generation. Then its probability
is almost identical to the probability of the optimum (1,1, 1).

We summarize the results. All complete recombination schemes lead to
the same univariate marginal distributions after one step of selection and
recombination. If recombination is used for a number of times without
selection, then the genotype frequencies converge to linkage equilibrium.
This means that all genetic algorithms are identical if after after one
selection step recombination is done without selection a sufficient number
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of times. This fundamental algorithm keeps the population in linkage
equilibrium. In the next section we will analyze this algorithm.

2 The Univariate Marginal Distribution Algorithm
UMDA

The univariate marginal distribution algorithm UM DA generates new
points according to p(x, t) = [, pf(z;,t). Thus UM D A keeps the gene
frequencies in linkage equilibrium. This makes a mathematical anal-
ysis possible. We derive a difference equation for proportionate selec-
tion. This equation has already been proposed by Sewall Wright in 1937
(1970). Wright’s equation shows that UM DA is trying to solve a con-
tinuous optimization problem. The continuous function to be optimized
is the average fitness of the population W (p). The variables are the uni-
variate marginal distributions. In a fundamental theorem we show the
relation between the attractors of the continuous problem and the local
optima of the fitness function f(x).

2.1 Definition of UM DA

Instead of performing recombination a number of times in order to con-
verge to linkage equilibrium, one can achieve this in one step by gene pool
recombination (Miihlenbein & Voigt, 1996). In gene pool recombination
a new string is computed by randomly taking for each loci a gene from
the distribution of the selected parents. This means that gene x; occurs
with probability p?(z;) in the next population. pf(z;) is the distribution
of z; in the selected parents. New strings x are generated according to
the distribution

(2.1) p(x,t+1) = Hp?(wi,t)

One can simplify the algorithm still more by directly computing the
univariate marginal frequencies from the data. Then Equation 2.1 can
be used to generate new strings. This method is used by UM DA.

UMDA

e STEP 0: Set t <= 1. Generate N > 0 points randomly.

e STEP 1: Select M < N points according to a selection method.
Compute the marginal frequencies p{(z;,t) of the selected set.

e STEP 2: Generate N new points according to the distribution
p(x,t +1) = [T, pi(zi,t). Set t <=t + 1.
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e STEP 3: If termination criteria are not met, go to STEP 1.

For proportionate selection we need the average fitness of the popula-

tion f(t). We consider f(t) as a function which depends on p(z;). To
emphasize this dependency we write

W formally depends on 2n parameters. p;(X; = 1) and p;(X; = 0)
are considered as two independent parameters despite the constraint
pi(X; = 0) =1 — p;(X; = 1). We abbreviate p; := p;(X; = 1). If we
insert 1 — p; for p;(X; = 0) into W, we obtain W. W depends on n
parameters. Now we can formulate the main theorem.

Theorem 2.1. For infinite populations and proportionate selection the
difference equations for the gene frequencies used by UMDA are given

by

_ filzi,t) apfi—%
(2.3) pi(zi,t +1) = pi(wi, t) W) = pi(zi,t) W

where f;(z;,t) = > oxXima; 1 (%) H;;ip(:nj,t). The equation can also be
written as

(2.4) pilt+1) = ps(t) + pi(t)(1 —mt))v;“

The response R(t) is given by

VA(t) 1 Qi % aj 62W
2.5 R(t) = —=+ = —
(25) ®) W 2 ; W2 OpiOp;
1 a; ko kap  OBW
+ = - + .
Z W3 OpiOp;Opi

3!
i#],j#k,i#k

(2.6) VA®t) = Zpi(l,t)(fi(l,t) — W)+ pi(0,8)(f:(0, ) — W)?
oW
31%‘

a; = pi(t)(1 = pi(t))

V A(t) is called the additive genetic variance. Furthermore the aver-
age fitness never decreases

(2.7) W(t+1) > W(t)
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Proof: Equation 2.3 has been proven in (Miihlenbein, 1997). We have
to prove Equation 2.4. Note that

pi(t +1) —pi(t) = pi(t)

Obviously we have

ow . .
B =flzi=1,t) = f(zi =0,
From p;(t) fi(z;i = 1,) + (1 — pi(t)) fi(z; = 0,) = W(t), we obtain
flai =1,8) = W(t) — (1= pi(t) f(wi = 1,8) + (1 = pi(1)) f (i = 0,£) = 0

This gives R
_ ~ ow
filwi =1,8) =W (t) = (1 — pi(t)) ap;

Inserting this equation into the difference equation gives Equation 2.4.
Equation 2.5 is just the multi-dimensional Taylor expansion. The first
term follows from

Z(pz(t"‘ 1) sz 1 _pz )) (%)

= sz (fi(1,8) = W)(fi(1,8) = W + W = [;(0,1))

= sz (fi(L,8) = W)? + (L= pi()) (fi(0,8) = W) = VA(#)
(|

The above equations completely describe the dynamics of UMDA
with proportionate selection. Mathematically UMDA performs gradient
ascent in the landscape defined by W or W.

Equation 2.4 is especially suited for the theoretical analysis. It is
called Wright’s equation because it has been proposed by Wright in
1937. Wright’s (1970) remarks are still valid today:

The appearance of this formula is deceptively simple. Its use in con-
junction with other components is not such a gross oversimplification in
principle as has sometimes been alleged ... Obviously calculations can be
made only from rather simple models, involving only a few loci or sim-
ple patterns of interaction among many similarly behaving loci. .. Apart
from application to simple systems, the greatest significance of the gen-
eral formula is that its form brings out properties of systems that would
not be apparent otherwise.
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The restricted application lies in the following fact. In general the
difference equations need the evaluation of 2" terms. The computational
complexity can be drastically reduced if the fitness function has a special
form.

Example 2.1. f(z) =, a;z;, z; € {0,1}

After some tedious manipulations one obtains:

W(p) = Z a;p;i(1)

ow
. = a;+ Z a;p;(1)
9pi(1) Py
This gives the difference equation
a;
(2.8) Ap;(1) = pi(1,8)(1 — pi(1,¢))

Zi aipi(la t)

Noting that % = a; we have proving nothing else than Wright’s
equation. This equation has been approximately solved in (Miihlenbein
& Mahnig, 1999a).

This example shows that the expressions for W and its derivatives can
be surprisingly simple. W (p) can be obtained from f(x) by exchanging
z; with p;(1). But the formal derivation of W(p) cannot be obtained
from the simplified W (p) expression.

Another interesting example is a multiplicative function.

Theorem 2.2. For a multiplicative function f(x) = [[i_, fi(z:) we
have

Proof: The proof is technically somewhat complicated. Therefore we
just sketch the proof for n = 2. We set p1 = p1(z1,t) and p2 = pa(x2, t).
Using equation 2.3 we obtain

plfl(wlvt)pr(w2vt)

p(x,t+1) = i
filz,t) = paf(zr, @) + (1 —po) flar,1— z2)
fo(z2,t) = pif(z,ze) + (1—p)f(1—21,22)

After some manipulations we obtain

fi(z,t) fol@a, t) = flwy, m)W
and finally

p(x,t+ 1) = p(x, t)%
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From Lemma 1.1 we obtain R(t) =V (t)/W.
O
We will investigate the computation of W and its gradient in the
following section.

2.2 Computing the Average Fitness

Wright is also the originator of the landscape metaphor now popu-
lar in evolutionary computation and population genetics. Unfortunately
Wright used two quite different definitions for the landscape, apparently
without realizing the fundamental distinction between them. The first
landscape describes the relation between the genotypes and their fitness,
while the second describes the relation between the allele frequencies in
a population and its mean fitness.

The first definition is just the fitness function f(x) used in evolu-
tionary computation, the second one is the average fitness W (p). The
second definition is much more useful, because it lends to a quantitative
description of the evolutionary process, i.e. Wright’s equation.

For notational simplicity we only derive the relation between f(x)
and W for binary alleles. Let o = (a1, ...,a,) with a; € {0,1} be a
multi-index. We define with 0° := 1:

x® = H z
13
i

Definition 2.1. The representation of a binary discrete function using
the ordering according to function values is given by

fxX)=f0,...,00(L—z1) - 1—z,)+---+ f(1,..., D)z1- -z,

The representation using the ordering according to variables is
(2.10) fx) =) a.”
(e

max{|al; = >, a; : aq # 0} is called the order of the function.

In both representations the function is linear in each variable x;. The
following lemma is obvious.

Lemma 2.1. The two representations are unique. There exist a unique
matriz A of dimension 2™ x 2" such that

Ao = (Af)oz
We now use this result for W.

Lemma 2.2. W(p) := f(t) is an extension of f(z) to S. There exist
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two representations for W(p) These are given by
(2.11)

W(p) = f(0,....0)A=p1) (L =pn)+ -+ F(L.., pr---pa
(2.12) W(p) =) aap"

The proofs in this section have been informal. The above lemma can
rigorously be proven by Moebius inversion. If the function is given in
analytical form (Equation 2.10) and the order of the function is bounded
by a constant independent of n, W(p) can be computed in polynomial
time. The equation can also be used to compute the derivative of W,
which is needed for Wright’s equation. It is given by

(2.13) ZZ((S) = 3 awp”

ala;=1

with o} = 0,0} = a;.

We will now characterize the attractors of UMDA. Let S; =
{ail YXopeony @ime) <15 0 <gi(xx) <1} and S =][; S; the Cartesian
product. Then S = [0, 1] is the unit cube.

Theorem 2.3. The stable attractors of Wright’s equation are at the
corners of S, i.e p; € {0,1} i =1,...,n. In the interior there are only
saddle points or local minima where grad W(p)) = 0. The attractors
are local mazima of f(x) according to one bit changes. Wright’s equa-
tion solves the continuous optimization problem argmax{W (p)} in S by
gradient ascent.

Proof: W is linear in p;, therefore it cannot have any local maxima
in the interior. Points with grad W (p) = 0 are unstable fixpoints of
UMDA.

We next show that boundary points which are not local maxima of
f(z) cannot be attractors. We prove the conjecture indirectly. Without
loss of generality, let the boundary point be p = (1,...,1). We now
consider an arbitrary neighbor, i.e p* = (0,1,...,1). The two points are
connected at the boundary by

p(z)=(1-2,1,...,1) z €]0,1]
We know that V~V~is linear in the parameters p;. Because W(p*) =
f(0,1,...,1) and W(p) = f(1,...,1) we have
(2.14) Wp(z) = f1,...,1) + z- [f(0,1,...,1) = f(1,...,1)].
If £(0,1,...,1) > f(1,...,1) then p cannot be an attractor of UMDA.
The mean fitness increases with z. O
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The extension of the above lemma to multiple alleles and multivariate
distributions is straightforward, but the notation becomes difficult.

3 The Science of Breeding

Fitness proportionate selection is the undisputed selection method in
population genetics. It is considered to be a model for natural selection.
But for proportionate selection the following problem arises. When the
population approaches an optimum, selection gets weaker and weaker
because the fitness values become similar. Therefore breeders of livestock
use other selection methods. These are called artificial selection. For
large populations they mainly apply truncation selection. It works as
follows. A truncation threshold 7 is fixed. Then the 7N best individuals
are selected as parents for the next generation. These parents are then
randomly mated.

The science of breeding is the domain of quantitative genetics. The
theory is based on macroscopic variables. Because an exact mathemati-
cal analysis is impossible, many statistical techniques are used. In fact,
the concepts of regression, correlation, heritability and decomposition of
variance have been developed and applied in quantitative genetics for
the first time.

3.1 Single Trait Theory

For a single trait the theory can be easily summarized. Starting with the
fitness distribution, the selection differential S(t) is introduced. It is the
difference between the average of the selected parents and the average
of the population.

(3.1) S(t) =wW(p*(t+1)) - W(p(t))
Similarly the response R(t) is defined

(3-2) R(t) = W(p(t+1)) - W(p(t))
Next a linear regression is done

(3.3) R(t) = b(t)S(t)

b(t) is called realized heritability. The most difficult part of applying
the theory is to predict b(t). The first estimate uses the regression of
offspring to parent. Let f;, f; be the phenotypic values of parents ¢ and
7, then

f_.i7j — fz‘;fj




May 14, 2001
THE SCIENCE OF BREEDING / 19

is called the mid-parent value. Let the stochastic variable F denote the
mid-parent value.

Theorem 3.1. Let P(t) = (fi1,..., fn) be the population at generation
t, where f; denotes the phenotypic value of individual i. Assume that an
offspring generation O(t) is created by random mating, without selection.
If the regression equation

(3.4) 0i(t) = a(t) + bpo(t) -
with

fit+ f;
2

+ €ij

E(Gij) =0

is valid, where 0;; is the fitness value of the offspring of i and j, then

(3.5) bpo(t) ~ b(t)
Proof: From the regression equation we obtain for the expected aver-
ages

E(O(t)) = a(t) + bpo (1) M ()
Because the offspring generation is created by random mating without
selection, the expected average fitness remains constant

E(O(t)) = M(t)
Let us now select a subset as parents. The parents will be randomly

mated, producing the offspring generation. If the subset is large enough,
we may still use the regression equation and obtain for the averages

M(t+1) = a(t) + bpo(t) - Ms(t)
Here M (t+1) is the average fitness of the offspring generation produced
by the selected parents. Subtracting the above equations we obtain

M(t+1) = M(t) = bpo(t) - (M(t) — M(t))
This proves bpy(t) = b(t).

The importance of regression for estimating the heritability was discov-
ered by Galton and Pearson at the end of the 19th century. They com-
puted the regression coefficient rather intuitively by scatter diagrams
of mid-parent and offspring (Freedman et al., 1991). The problem of
computing a good regression coefficient is mathematically solved by the
theorem of Gauss-Markov. We just cite the theorem. The proof can be
found in any textbook on statistics (Rao, 1973).
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Theorem 3.2. A good estimate for the regression coefficient of mid-
parent and offspring is given by

cov(O(tl, P(t))
var(P(t))

The covariance of O and P is defined by

(3.6) bpo(t) =

cov(O(t), P(t)) = % Z(Oi,j —av(0(1))) - (fij — av(P(1)))

av denotes the average and war the variance. Closely related to the

regression coefficient is the correlation coefficient cor(F,O). It is given
by

_ var(P(t))

cor(P(t),0(t)) = bpo(t) - (m

The concept of covariance is restricted to parents producing offspring.

It cannot be used for UMDA. Here the analysis of variance helps. We

will decompose the fitness value f(x) recursively into an additive part

and interaction parts. We recall the definition of conditional probability.

Definition 3.1. Let p(x) denote the probability of x. Then the condi-
tional probability p(x|y) of x given y is defined by

)1/2

_ p(x,y)

First we extract the average.

(3-8) f(x) = f +ro(x)
Then we extract the first order (additive) part from the residual ro(x).

n

(3.9) ro(x) = Z fey(@i) +r1(x)
where f(;)(z;) are given by
fiy(@i) = ZP(X|$i)7“0(X) = ZP(X|$i)f(X) —f
x|z; x|z;

Here Zx‘mi means that the i-th locus is fixed to the value x;. The f(;)(2;)

minimize the quadratic error Y _ p(x)r(x)?.

If r1(x) #Z 0, we can proceed further to extract the second order terms
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from ry(x):
(3.10) ri(x) =Y fiig (@i,25) + ra(x)
2
where
fap@ozy) = > plzi,x;) ri(x)
x|z;,z;
= Z p(x|zi, z5) f(x) = fuy(@i) — fi)(z5)
x|z;,z;

If we have n loci, we can iterate this procedure n — 1 times recursively
and finally we get the decomposition of f as

flx) = f+2f(i)(mi)+Zf(i,j)(wiaxj)+"'
i (4,4)
+ D Flirines) @igs e i) + 1 (%)

(i1, vip 1)
11 <oeo<bp—1

Let Vi, for £k =1 to n — 1 be defined as
BA1)  Ve= > > p@irs e i) flirin) Tigs e i)

JCTRRE i) TigseenTip
11 <...<1p

and

(3.12) Vo =Y p()ra_i(x)?

X

If the population is in linkage equilibrium, the reader easily verifies that
V1 is the additive genetic variance defined by Equation 2.6. p(x;,, ..., 24, )
is a marginal probability distribution defined by p(x). We are now able
to formulate the theorem.

Theorem 3.3. Let the population be in linkage equilibrium i.e.
n

(3.13) p(x) = [[ pitar)
i=1

Then the variance of the population is given by
(3.14) V=Vi+Vot -+ V,1+V,

The covariance of mid-parent and offspring can be computed from

_ 1 1 1 "1
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The proof can be found in (Asoh & Miihlenbein, 1994a). We now
compare the estimates for heritability. For proportionate selection we
have from Theorem 2.1

Rumpa(t) = “//’,4((:)) S(t) + errory (t).

For Two-Parent-Recombination (TPR) Miihlenbein (1997) has shown
for n = 2 loci

RTPR(t) =2

P(t),0(t 1
cov(P(), O(t) IE()t,) (®)) S(t) + errors (t)
If the population is in linkage equilibrium we have error; = errory
Using the covariance decomposition we can write

VA(t) 1Va(t) 1
0 S(t) + 370 S(t) + ierror(t)

Thus the first term of the expansion is identical to the UM DA
term. This shows again the similarity between two parent recombi-
nation and the UM DA method. Breeders usually use the expression
b(t) = VA(t)/V(t) as an estimate. It is called heritability in the narrow
sense (Falconer, 1981). But note that the variance decomposition seems
to be only true for Robbins’ proportions.

The selection differential is not suited for mathematical analysis. For
truncation selection it can be approximated by

(3.16) S(t) ~ I, VE(t)

where I is called the selection intensity. Combining the two equations
we obtain the famous equation for the response to selection.

(3.17) R(t) = b)),V (t)

These equations are in depth discussed in (Miihlenbein, 1997). The
theory of breeding uses macroscopic variables, the average and the vari-
ance of the population. But we have derived only one equation, the
response to selection equation. We need a second equation connecting
the average fitness and the variance in order to be able to compute the
time evolution of the average fitness and the variance. There have been
many attempts in population genetics to find a second equation. But
all equations assume that the variance of the population continuously
decreases. This is not the case for arbitrary fitness functions. Recently
Priigel-Bennet and Shapiro (1997) have independently proposed to use
moments for describing genetic algorithms. They apply methods of sta-
tistical physics to derive equations for higher moments for special fitness
functions.

Rrpr(t) =
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3.2 Tournament Selection

Another important scheme is tournament selection of size k. Here k in-
dividuals are randomly chosen. The best individual is taken as parent.
We model binary tournament selection (k = 2) as a game. Two individ-
uals with genotype x and y “play” against each other. The one with the
larger fitness gets a payoff of 2. If the fitness values are equal, both will
win half of the games. This gives a payoff of 1. The game is defined by
a payoff matriz with coefficients

2 f(x)>f(y)
agy =4 1 f(x)=f(y)
0 f(x) <f(y)

With some effort one can show that

(3.18) S> p(x,tagyp(y,t) =1

After a round of tournaments the genotype frequencies are given by

(3.19) Pt +1) =p(x,1) Y amyp(y,1).

If we set

b(x,t) = Z azyp(y,t),

then the above equation is similar to proportionate selection using the
function b(x, t). But b depends on the genotype frequencies. Furthermore
the average b(t) = 3. p(x, t)b(x, t) remains constant, b(t) = 1.

The difference equations for the univariate marginal frequencies can
be derived in the same manner as for proportionate selection. They are
given by

(3.20) pizi, t + 1) = p(xi,t) - Bi(t)
(3.21) Bi(t) = Z b(x,t) pr (xj,t)
x, X;=x; J;:

The difference equation for binary tournament selection is more diffi-
cult than for proportionate selection. B; is quadratic in p(z;). The fit-
ness value of x is given by }°, a.,p(y,t). This is called called frequency
dependent fitness in population genetics.

Tournament selection uses only the order relation of the fitness values.
The fitness values themselves do not change the outcome of a tourna-
ment. Therefore the evolution of the univariate marginal frequencies
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depends on the order relation only. The same is true for truncation se-
lection. Thus tournament selection can be approximated by truncation
selection. For each k there exists a selection intensity I with

S(t) = L,V(t)
For k = 2 we have I, = 1/4/7 = 0.564 ((Miihlenbein, 1997)).

3.3 Analytical Results for Linear Functions

For the special case that all univariate marginal distributions are equal,
i.e. p; := p, it is possible to obtain an analytical solution for p(t).

We cite from (Miihlenbein, 1997) the analytical solutions for the linear
function OneMax(n) = ), x;. For completeness we give the difference
equation and its solution.

Theorem 3.4. If in the initial population all univariate marginal fre-
quencies are identical to po > 0, then we obtain for UMDA and OneMax
proportionate selection:

(3.22) R(t) =1 - p(t)

(3.23) plt) =1 (1= po)(1 — 1)’

truncation selection:

(3.24) R(t) = I.\/np(t)(1 — p(1))

(3.25) p(t) ~ 0.5 (1 + sin(%t + arcsin(2po — 1)))

tournament selection:

(3.26)

R(t) = np(1 - p) (2 ,ég <Z ~ i) (?)p’”jl(l —p)?
=1\ (0 s TP =
+;<k_1><k>p (1-p) —]Zop)
(3.27)

R(t) ~ 0.564\/np() (L — p(1))

The formulas can be used to compute the number of generations until
convergence (GEN,). For truncation selection convergence is defined by
p(t) = 1, for proportionate selection by p(t) =1 —e.

Corollary 3.1. The number of generations until convergence is given
by:
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FIGURE 3.1. Comparison of selection methods for OneMax(128)

proportionate selection:

1—

(3.28) GEN, =n - In—2°
€

truncation selection:

(3.29) GEN, = (g — arcsin(2pg — 1))
Truncation selection converges in O(y/n) and proportionate selection

in O(—n -In(e)) generations. Numerical results have shown that trunca-

tion selection converges in about O+/n till O(n) generations (Miihlenbein
& Mahnig, 2000) for all fitness functions optimized.

The analytical solutions almost perfectly match the results obtained
from actual UMDA runs (see figure 3.1). With proportionate selection
the population needs a long time to approach the optimum. In contrast,
truncation selection and tournament selection lead to much faster con-

vergence. p increases almost linearly until near the optimum. Equation

3.26 for binary tournament selection has p*>" as the largest exponent.

This complicated equation can be approximated by Equation 3.27 with

N

I,

surprising accuracy.
We next present numerical results for some popular fitness functions.

3.4 Numerical Results for UMDA
This section solves the problem put forward by Mitchell et al. (1994):

to understand the class of problems for which genetic algorithms are
most suited, and in particular, for which they will outperform other



May 14, 2001
26 / EVOLUTIONARY COMPUTATION AND BEYOND

TABLE 3.1
Mean function evaluations for Royal Road(8). U is UMDA, F FDA

1+1 SGA Up|U7r=03|U:7=005|F:7=03
6,334 | 61,334 | 55,586 28,000 14,264 7,634

search algorithm. We start with the Royal Road function, which was
erroneously believed to lay out a royal road for the GA to follow to the
optimal string.

3.5 Royal Road Function

We discuss the Royal Road function R;, which was used by Mitchell et
al. (1994). It is defined as follows:

-1 8
(330) Rl (l, CU) = Z H T8i+j
i=0 j=1

The function is of order 8. The Building Block Hypothesis BBH (Hol-
land, 1975/1992) states that “the GA works well when instances of
low-order, short schemas that confer high fitness can be recombined
to form instances of larger schemas that confer even higher fitness.” In
our terminology a schema defines a marginal distribution. Thus a first-
order schema defines a univariate marginal distribution. Our analysis has
shown that only the first half of the BBH is correct: first order schemata
of high fitness are recombined. Larger schemata play no role.

Table 3.1 confirms and extends the results of Mitchell et al. (1994).
The really bad performance of SGA is mainly a result of proportionate
selection. UMDA with proportionate selection (U: p) needs slightly less
evaluations. With very strong selection, UMDA needs only about twice
as much function evaluations as the (1 + 1)-algorithm. This algorithm
performs a random bit flip and accepts a new configuration if its fitness
is equal or better. The good performance of this algorithm has already
been shown in (Mihlenbein, 1991). But it performs only good if the
fitness function never decreases with increasing number of bits. Almost
identical performance to the (14 1)-algorithm can be obtained by FDA.
It uses marginal distributions of size 8 instead of univariate marginal
distributions. It will be explained in Section 4.3.

Figure 3.2 shows once more the importance of selection. Proportionate
selection performs very good in the beginning, because the fitness values
of all strings containing no building block are zero. These strings are not
reproduced. But after 5 generations proportionate selection gets weaker.
Truncation selection with 7 = 0.3 overtakes it after 23 generations. We
just mention, that the numerical results would be much worse for pro-
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FI1GURE 3.2. Convergence of Royal Road

portionate selection, if we add 1 to the Royal Road function. In this
case proportionate selection selects also many strings without a building

block.

solve the equations. We have
8

-1
I/T/(P) = ZHpsth

We will now explain the results by using our theory to analytically

i=0 j=1
oW ! . .
— = | psiv; 8i<k<B8i+8
Opr, e

8i+j4k
For truncation selection we will apply the response to selection equa-
tion. Therefore we have to compute the variance V;(t). We simplify the
computation by observing that the blocks of 8 variables are independent

and therefore
Vi(t) =1-Vi(t).
We recall that all function values are 0 except f(1,...,1). Therefore
Vi) = Y plz,0)f (@) - W?
x
= TIpi — (IIp)?

If we assume that p; = p for all i we obtain
Vs(t) = 8p(t)*(1 - p(t)®)

(3.31)
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We can now formulate the theorem.

Theorem 3.5. If all univariate marginal distributions are identical to
p(t) and p(0) = po then we obtain for proportionate selection

(3.32) p(t+1)—plt) = 1_71’(”
(3.33) pt) = 1—(1—po)(%)

For truncation selection with threshold T we approzimately get
(330)  R(#) ~ bOL\EO (1 - p)F)
. b .
8 T 8 _
(3.35)  p(t)® ~ 0.5 (1 + s1n( 5L+ arcsin(26} 1)))

Proof: The conjectures for proportionate selection directly follow from
Equation 2.4. From the response to selection equation we obtain

8p(t+1)° = 8p(t)® ~ b(t)Iv/8p(t)*(1 — p(t)®)

If we set g(t) = p(t)® the above equation is identical to the equation for
OneMax(8). The approximate solution is given by Equation 3.25. O

In order to apply Equation 3.35 we need an estimate for the realized
heritability b(t). Experiments show that b(¢) increases approximately lin-
early from about 0 to 1. Thus we set b(t) o« ¢. A numerical comparison
between Equation 3.35 and a simulation with truncation threshold 0.05
shows only 5% difference. The coincidence between theory and simula-
tion is very good.

This example shows that the response to selection equation can in special
cases be used to compute an analytical solution for p(t). The difficulty
is to determine the heritability b(t).

3.6 Multi-modal Functions Suited for UMDA Optimization

Equation 2.4 shows that UMDA performs a gradient ascent in the land-
scape given by . This helps our search for functions best suited
for UMDA. We take the Saw landscape as a spectacular example.
The definition of the function can be extrapolated from Figure 3.3. In
Saw(n,m, k), n denotes the number of bits and 2m the distance from one
peak to the next. The highest peak is multiplied by k (with k < 1), the
second highest by k2, then k3 and so on. The landscape is very rugged.
In order to get from one local optimum to another one, one has to cross
a deep valley.

But again the transformed landscape W (p) is fairly smooth. An ex-
ample is shown in Figure 3.4. Whereas f(x) has 5 isolated peaks, W (p)
has three plateaus, a local peak and the global peak. We will use UM D A
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FIGURE 3.3. Definition of Saw(36,4,0.85)

with truncation selection. We have not been able to derive precise ana-
lytical expressions. In Figure 3.4 the results are displayed.

In the simulation two truncation thresholds, 7 = 0.05 and 7 = 0.01, have
been used. For 7 = 0.05 the probability p stops at the local maximum
for W (p). It is approximately p = 0.78. For 7 = 0.01 UM DA is able to
converge to the optimum p = 1. It does so by even going downhill!

This example confirms in a nutshell our theory. UM DA transforms
the original fitness landscape defined by f(x) into a fitness landscape
defined by W(p) This transformation smoothes the rugged fitness land-
scape f(x). UM DA might find the global optimum, if there is a tendency
towards the global optimum.

This example shows that UMDA can solve difficult multi-modal opti-
mization problems. It is obvious that any search method using a single
search point like the (1+ 1)-algorithm needs an almost exponential num-
ber of function evaluations.

3.7 Deceptive Functions

There exist many optimization problems where UM DA is mislead.
UMD A will converge to local optima, because it does not use correla-
tions between the variables. We demonstrate this problem by a deceptive
function. We use the definition

k—1—|X|1 0§|X|1<k
k |X|1:k'

The global maximum is isolated at z = (1,...1). A deceptive function

(3.36) Decep(x, k) := {
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of order n is a needle in a haystack problem. This is far too difficult
to optimize for any optimization method. We simplify the optimization
problem by adding 1 distinct Decep(k)-functions to give a fitness function
of size n = [ x k. This function is also deceptive. The local optimum
x = (0,...,0) is surrounded by good fitness values, whereas the global
optimum is isolated.

n
(3.37) Decep(n, k) = Z Decep((@i, Tit1,- .-, Tivk—1), k)
=1,k 1,...

Our theory easily shows that at p; = 0.5 the gradient points to z; = 0.
Thus starting at p(0) = 0.5 UMDA converges to the local optimum
x = (0,...,0). This problem can be solved, if higher order marginal
distributions are used. This will be discussed later in the context of the
Factorized Distribution Algorithm FDA.

We next show how the science of breeding can be used for controlling
UMDA.

3.8 Numerical Investigations of the Science of Breeding

The application of the science of breeding needs the computation of the
average fitness f(t), the variance V(¢) and the additive genetic variance
V A(t). The first two terms are standard statistical terms. The compu-
tation of VA needs f;(z;) and p;(x;). The computation of the first term
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ance and VA multiplied by 10); s = 0.1, n = 32

only poses some difficulties. It can be approximated by

f(&)

N
(3.38) filXi=1t= Y %f(x) ~ %Zp(
k=1 4"

e Xi=1 pi( i =

(¥ are those x values in the population which contain z; = 1.

Linear functions are the ideal case for the theory. The heritability b(t)
is 1 and the additive genetic variance is identical to the variance. We skip
this trivial case and start with a multiplicative fitness function f(x) =
[1,(1 — s)'=%. For a multiplicative function we also have R(t) = S(¢)
(Theorem 2.2).

Figure 3.5 confirms the theoretical results from Section 1 (VA and
Var are multiplied by 10 in this figure). Additive genetic variance is
almost identical to the variance and the heritability is 1. The function is
highly nonlinear of order n, but nevertheless it is easy to optimize. The
function has also been investigated by Rattray and Shapiro (1999). But
their calculations are very difficult.

An interesting case is the function Deceptive — 4. In Figure 3.6 the
function is optimized for 32 bits. As predicted by the theory UM DA
converges to the local optimum x = (0, ..., 0). Heritability is almost zero
at the beginning, indicating that the competition between setting the
genes to 0 or to 1 is undecided. UM D A decides to go to the direction of 0.
If there is a high percentage of zeros in the population, then heritability
increases to almost 1. In this area the fitness function is almost linear.
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FIGURE 3.6. Heritability and Variance for Dec-4: Average, Var and VA
divided by 3; 7 = 0.3, n = 32

This shows that heritability can strongly depend on the gene frequencies.

The examples demonstrate that it is worthwhile to compute the quan-
tities used for a scientific breeding program. They clearly indicate how
difficult the optimization problem is. In breeding of livestock heritabil-
ity is normally greater than than 0.2. If we optimize arbitrary fitness
functions the heritability can be almost 0. But because we can easily
compute 1000 generations on a computer in a few minutes, UM DA can
be used for problems with very low heritability.

We have shown that UM DA can optimize difficult multi-modal func-
tions, thus explaining the success of genetic algorithms in optimization.
We have also shown that UM D A can easily be deceived by simple func-
tions called deceptive functions. These functions need more complex
search distributions. This problem is investigated next.

4 Graphical Models and Optimization

The simple product distribution of UM DA cannot capture dependen-
cies between variables. If these dependencies are necessary to find the
global optimum, UM DA and simple genetic algorithms fail. We take
an extreme case as example, the needle in a haystack problem. The fit-
ness function is everywhere one, except for a single x where it is 10.
All x; values have to be set in the right order to obtain the optimum.
Of course, there exist no clever search method for this problem. But
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there is a continuum of increasing complexity from the simple OneM ax
function to the needle in a haystack. For complex problems we need a
complex search distribution. A good candidate for a search distribution
for optimization is the Boltzmann distribution.

Definition 4.1. For g > 0 define the weighted Boltzmann distribution
of a function f(x) as

po(x)e ) po(x)e7)
4. = -
(4.1) Ps,5(x) >, o)™ T Z1(3,po)

where Z¢(,po) is the partition function. To simplify the notation (3
and/or f can be omitted. po(x) is the distribution for § = 0.

The Boltzmann distribution concentrates the search around good fit-
ness values. Thus it is theoretically a very good candidate for a search
distribution used for optimization. The problem lies in the efficient com-
putation of the Boltzmann distribution. The theory presented in this sec-
tion unifies simulated annealing and population based algorithms with
the general theory of estimating distributions.

4.1 The Factorized Distribution Algorithm FDA

The Boltzmann distribution is usually defined as eI /Z. The term
g(x) is called the energy and T' = 1/ the temperature. The weighted
Boltzmann distribution has a number of properties, among them

Lemma 4.1. Let z,, € M be a global optimum of the function f(x)
and x; a point with f(x;) < f(xm). Then

o Let g(x) := f(x) +c. Then pg (x) = pg,q¢(x).
o Let g(x) :=c- f(x). Then pg ¢(x) = pea,r(x).

The first property means that the distribution is invariant under ad-
dition of a constant. It is, however, not invariant under multiplication.
We will discuss how to overcome this shortcoming in Section 4.4.

The Boltzmann distribution is a suitable distribution for optimization
because it concentrates its weight with increasing 8 around the global
optima of the function. If it was possible to sample efficiently from this
distribution for arbitrary 8, optimization would be almost trivial.

4.2 Boltzmann selection

Closely related to the Boltzmann distribution is Boltzmann selection.
An early study about this selection method can be found in (de la Maza
& Tidor, 1993).
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Definition 4.2. Given a distribution p and a selection parameter v,
Boltzmann selection calculates the distribution of the selected points
according to

p(x)er )
B Ey p(y)e’Yf(Y)

This allows us to define the BED A (Boltzmann Estimated Distribution
Algorithm).

(4.2) p°*(x)

BEDA - Boltzmann Estimated Distribution Algorithm

STEP 0: t < 0. Generate N points according to the p(x,0) =
po(X).
STEP 1: With a given AS(t) > 0, let
AB(t) f(x)
S
STEP 2: Generate N new points according to the distribution
p(x,t + 1) = p*(x, t).
e STEP 3:t <t +1.
e STEP 4: If stopping criterion not met go to STEP 1

BEDA is a conceptional algorithm, because the calculation of the
distribution requires to compute the sum of exponentially many terms.
The following convergence theorem is easily proven.

Theorem 4.1 (Convergence). Let AB(t) be an annealing schedule,
i.e. for every t increase the inverse temperature 8 by AB(t). Then for
BEDA the distribution at time t is given by

B po(x)eﬁ(t)f(X)
(43) plxt) = Z(B(t),po)

with the inverse temperature

t
(44) B(t) = AB(7).
=1
Let M be the set of global optima. If B(t) — oo, then
: Yim zeM
45 1 1) =
(4.5) Jim p(z, 1) {0 olse

Proof: Let 2™ € M be a point with optimal fitness and « ¢ M a point
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with f(x) < f(z™). Then
o (x)eBHF(x) B (%)
>, Po(y)efDI W) = | M- C - eBOFE™)
< 1
= TM[- C - BOFE (]

p(z,t) =

As B(t) — oo, p(z,t) converges (exponentially fast) to 0. Because
p(z,t) = p(y,t) for all z™,y™ € M, the limit distribution is the uniform
distribution on the set of optima. [l

Equation (4.5) only shows that the distribution converges to 0 for
non-optimal points. But we can also make an estimate for the rate of
convergence:

Lemma 4.2. Let po(x) be the uniform distribution. Let there be a &
such that for any non-optimal point © we have with x™ € M

(4.6) f(x) < f(@™) =6
Then
n-n2
(4.7) p2 pa(M) > 0.5.

Proof: Let |[M| be the number of optima. The number of terms in
the partition function is smaller than 2". For z™ € M we have with
M := f(z™)

m efM efM
1 ! 1
48 = > ,
( ) en1n2766+|M| - 2|M|
So, to have pg(M) > 1/, we need
(49) en1n2766 S2|M| — 52 n2_lg(2|M|)
or as a sufficient condition (4.7). O

Corollary 4.1. For a binary fitness function with integer values half of
the generated points will have mazimum fitness if 8 > 0.7n, independent
of the fitness function.

We next transform BEDA into a practical algorithm. This means the
reduction of the parameters of the distribution and the computation of
an adaptive schedule.
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4.3 Factorization of the distribution

In this section we describe a method for computing a factorization of
the probability, given an additive decomposition of the function:

Definition 4.3. Let sy,..., Sy be index sets, s; C {1,...,n}. Let fs, be
functions depending only on the variables x; with j € s;. These variables
we denote as xs; Then

is an additive decomposition of the fitness function f.

We also need the following definitions

Definition 4.4. Given si,..., Sy, we define for i = 1,...,m the sets
di, bl and C;’
i
(411) dz = U S5, bl =85 \ di—l; Ci ‘= S; N di_1
j=1
We set dy = 0.

In the theory of decomposable graphs, d; are called histories, b; residu-
als and ¢; separators (Lauritzen, 1996). We recall the following definition.

Definition 4.5. The conditional probability p(x|y) is defined as

_ p(xy)

In (Miihlenbein et al., 1999), we have shown the following theorem.

Theorem 4.2 (Factorization Theorem). Let p(x) be a Boltzmann
distribution with

I (x)

(4.13) bx) = s

and f(x)= 1", fs;(x) be an additive decomposition. If
(4.14) bi 0 Vi=1,...,1; d =X,
(4.15) Vi>23j <i such that ¢; C s;

then

(4.16) pe) =TT plas,

Te;)

The constraint defined by Equation (4.15) is called the running inter-
section property (Lauritzen, 1996).
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FDA - Factorized Distribution Algorithm

e STEP 0: Calculate b; and ¢; from the decomposition of the func-
tion.

e STEP 1: Generate an initial population with /V individuals.

e STEP 2: Select N individuals using Boltzmann selection.

e STEP 3: Estimate the conditional probabilities p(z,
the selected points.

e STEP 4: Generate new points according to p(x,t + 1) =
H?il p(l.bi Le;, t)'

e STEP 5: If not stopping criterion reached: t <= t+1 Go To STEP2

With the help of the factorization theorem, we can turn the concep-
tional algorithm BEDA into FFDA, the Factorized Distribution Algo-
rithm. As the factorized distribution is identical to the Boltzmann dis-
tribution if the conditions of the factorization theorem are fulfilled, the
convergence proof of BED A also applies to FDA.

Not every additive decomposition leads to a factorization using the
factorization theorem. In these cases, more sophisticated methods have
to be used. But F'DA can also be used with an approximate factoriza-
tion.

We discuss two simple examples.

x.,;,t) from

Example 4.1. For linear functions
(4.17) Linear(x) = 2”: ;T
i=1
we have s; ={i} and thus all c; are empty. This leads to the factorization
(4.18) p(x) = ﬁpi(iﬂi)-
i=1

As this is the distribution used by UMDA, FDA behaves like UM DA
(and thus like a simple genetic algorithm) for linear functions.

Example 4.2. Functions with a chain-like interaction can also be fac-
torized:

(4.19) Chain(x) = Z filwi—1, x;)

Here the factorization is

n

(4.20) p(x) = p(z1) Hp(wi|95i—1)

=2
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FDA can be used with any selection scheme, but then the conver-
gence proof is no longer valid. We think that Boltzmann selection is an
essential part in using the FFDA. In order to obtain a practical algo-
rithm, we still have to solve two problems: To find a good annealing
schedule for Boltzmann selection and to determine a reasonable sample
size (population size).

These two problems will be investigated next.

4.4 A new annealing schedule for the Boltzmann distribution

Boltzmann selection needs an annealing schedule. Lemma 4.2 has shown
how fast we have to anneal in order to reach convergence within a given
time frame. But if we anneal too fast, the approximation of the Boltz-
mann due to the sampling error can be very bad. For an extreme case,
if the annealing parameter is very large, the second generation should
consist only of the global maxima.

4.4.1 Taylor expansion of the average fitness

In order to determine an adaptive annealing schedule, we will make a
Taylor expansion of the average fitness of the Boltzmann distribution.

Definition 4.6. The average fitness of a fitness function and a dis-
tribution is

(4.21) Wip) = f(x)p(x)

For the Boltzmann distribution, we use the abbreviation W;(B3) :=
Wi (ps,f)-

Theorem 4.3. The average fitness of the Boltzmann distribution Wy ()
has the following expansion in B:

(1.22) wi ) =wi)+ 3 C= e, )
i>1 ’

where M{ are the centred moments

(4.23) ME(B) = Do) = Wi (8)]'p(x)

They can be calculated using the derivatives of the partition function:

ZI
a2 )= (5

Proof: The k-th derivative of the partition function obeys for £ > 0:
(4.25) Z{(8) =3 Fx)keH )
x

()
) fori>1, M{=0
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Thus the moments for £ > 1 can be calculated as

(4.26) M(8) = f(x)Fp(x) = 21 (0)
- Z;(9)
and thus
(4.27) Wi (B) = Mi(B) = Z;(8)/Z¢(B).
Direct evaluation of the derivatives of W leads to complicate expressions.
The proof is rather technical by induction. We omit it here. O

Corollary 4.2. We have approzimative

(4.28) Wi(B) m We(B) + (B = B) - 03(8)

where 07(f3) is the variance of the distribution, defined as o7(B) :=
M5 ().

This approximation can also be found in (Kirkpatrick et al., 1983).

Lemma 4.3. The variance of the Boltzmann distribution obeys

(4.29) f(x) # const. = o7(8) >0
Proof: We have Vz : pg(x) > 0. In order to have
(4.30) 73(8) = _[F(x) = Wy (B)] 'ps(x) = 0,

T

we must have for all z: f(x)=W/ in contradiction to the assumption. O

Corollary 4.3. With f(x) # konst. we have
(4.31) B>p8 = Wi(B)>W;i(B)

The corollary shows that the average fitness never decreases for Boltz-
mann selection. A similar result was already obtained in Theorem 2.1
for proportional selection (see also (Miihlenbein & Mahnig, 2000)).

4.4.2 The SDS Annealing Schedule

From (4.28) we can derive an adaptive annealing schedule. The variance
(and the higher moments) can be estimated from the generated points.
As long as the approximation is valid, one can choose a desired increase
in the average fitness and set S(t + 1) accordingly. So we can set

Wier () — W (B(1))
o (B(t))

From (4.28) we see that choosing AS proportional to the inverse of
the variance leads in the approximation to a constant increase in the

(4.32) AB() := B(t +1) - B(t) =
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average fitness. This is much too fast, especially near the optimum. As
truncation selection has proven to be a robust and efficient selection
scheme, we can try to approximate the behaviour of this method. For
truncation selection the response to selection Ry (t) is approximatively
given by equation 3.17

(4.33) R(t) = W((t +1) = W () ~ Irb(t)\/é

I, is the selection intensity, depending on the truncation threshold 7.
Because truncation selection has been shown to be an effective selec-
tion method, we will make the Boltzmann schedule proportional to the
inverse of the square root of the variance:

Definition 4.7. The standard deviation schedule (SDS) is defined by

c
(439 A0 = 5

We already know that FDA with Boltzmann selection remains un-
changed if we add a constant to the fitness function. For SDS we have
additionally

Lemma 4.4. For Boltzmann selection with SDS, BEDA is invariant
under linear transformations of the fitness function with a positive fac-
tor.

Proof: This lemma is true because the standard deviation scales linearly
under multiplication. Let f(x) be a fitness function, consider f(x) =
¢- f(x). The claim is that 3(t) = 8(t)/é, then the distributions are the
same for every t. With ¢=0, # and B are 0, so it is true. Let now ¢ and
B=p(t) be given. From the previous iteration we know that B = g/e.
According to lemma 4.1, we have pg r(x)=ps ;(x). Also, o3 (B) =

é2 - afc(ﬁ) Hence we have AB(t)=AB(t)/é. O
Corollary 4.4. Let o(t) be the standard deviation. Then the response
to selection for Boltzmann selection with the SDS is given by

i
(4.35) Rp(t) =Y ———Mf,

ilo(t)

277cC 3Arc
c* M. c’ M,
4.36 =colt)+ % + —n
( ) ®) 20(t)2  60(t)?

Note that this annealing schedule cannot be used for simulated anneal-
ing, as the estimation of the variance of the distribution requires samples
that are independently drawn. But the sequence of samples generated

by simulated annealing are not independent.

+...
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4.4.3 Linear functions
For linear functions

(4.37) Linear(x Z T

the factorization of the Boltzmann dlstrlbutlon was calculated in equa-
tion (4.18). We can also calculate the partition function and get

n

(438) Zf(ﬁ) = H(l + eﬁai)
and

efoi
(4.39) pi(B) = ps(Xi=1) = ;5.

Because of the independence of the variables, the variance is just the
sum of the variance of the factors and we have

n
al 2B

(4.40) o3 (8) = Z T4y Za pi(B) (1 — pi(B))

i=

and thus
(4.41) Bt+1)=p(t) +

VY a2mi(8) (1 - pi(8))

By differentiating (4.39) we get
dpi(B) _ ;e (14 eP*)B" — ePiaueli

dt (1 4 efi)2
(4.42) =pi(B) (1 — pi(B)) i %2
Therefore we obtain the differential equation
' i(B)(1 — pi i
(4.43) dpi(8) _ . piA)(1—pi(B))a

dt \/Ziagpi(ﬁ) (1 —pi(B))

Note that the solution of these differential equations remain the same
if we multiply all «; by a constant factor, as predicted.

For Onemaz we have o; =1. In this case all marginal frequencies are
equal to pg. We obtain the differential equation

dp,

(4.44) 7 =c\/ps(L=ps)/n
The solution of this equation is given by Equation 3.25.
We next turn to the fixation problem in finite populations.



May 14, 2001
42 / EVOLUTIONARY COMPUTATION AND BEYOND

4.5 Finite Populations

In finite populations convergence of UM DA or FD A can only be proba-
bilistic. Since UM D A a simple F'D A algorithm, it is sufficient to discuss
FDA. This section is extracted from (Miihlenbein & Mahnig, 1999b).

Definition 4.8. Let ¢ be given. Let Peony(N) denote the probability
that FDA with a population size of N converges to the optima. Then
the critical population size is defined as

(445) N*(e) = m]\irn Peony (N) >1-e€

If FDA with a finite population does not convergence to an optimum,
then at least one gene is fixed to a wrong value. The probability of
fixation is reduced if the population size is increased. We obviously have
for FDA

Pconv(Nl) Spconv(N2) Nl SNZ

The critical question is: How many sample points are necessary to rea-
sonably approximate the distribution used by FDA. A general estimate
from Vapnik (Vapnik, 1998) can be a guideline. One should use a sample
size which is about 20 times larger than the number of free parameters.

We discuss the problem with a special function called Int. Int(x) gives
the integer value of the binary representation.

n
(4.46) Int(n) = > 27"
i=1

The fitness distribution of this function is not normal distributed. The
function has 2" different fitness values. We show the cumulative fixation
probability in Table 4.1 for Int(16). The fixation probability is larger
for stronger selection. For a given truncation selection the maximum
fixation probability is at generation 1 for very small N. For larger values
of N the fixation probability increases until a maximum is reached and
then decreases again. This behaviour has been observed for many fitness
distributions.

For truncation selection with 7 = 0.25 we have for N = 80 a fixation
probability of about 0.075. A larger 7 reduces the fixation probability.
But this advantage is set off by the larger number of generations needed
to converge. The problem of an optimal population size for truncation
selection is investigated in (Miihlenbein & Mahnig, 1999b). Boltzmann
selection with Ag = 0.01 is still very strong for the fitness distribution
given by Int(16). For N = 700 the largest fixation probability is still at
the first generation. Therefore the critical population size for Boltzmann
selection for Ag = 0.01 is very high (N* > 700). In comparison, the
adaptive Boltzmann schedule SDS has a total fixation probability of
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TABLE 4.1
Cumulative fixation probability for In#(16). Truncation selection vs.
Boltzmann selection with A3 = 0.01 and Boltzmann SDS; N denotes size of

population.
7=025|7=05|7=025|17=0.5 Boltz. SDS
t| N=30 | N=30| N=80 | N=60 | N =700 | N =100
1| 0.0955 0.0035 0.0 0.0 0.0885 0.0
2 | 0.4065 0.0255 0.0025 0.0095 0.1110 0.0
3| 0.5955 0.1040 0.0165 0.0205 0.1275 0.0
4 | 0.6880 0.2220 0.0355 0.0325 0.1375 0.002
5| 0.7210 0.3270 0.0575 0.0490 0.1455 0.002
6 | 0.7310 0.4030 0.0695 0.0630 0.1510 0.008
71 0.7310 0.4470 0.0740 0.0715 0.1555 0.018
8 | 0.7310 0.4705 0.0740 0.0780 0.1565 0.030
9| 0.7310 0.4840 0.0740 0.0806 0.1575 0.036
14 0.084

0.084 for a population size of N = 100. This is almost as small as
truncation selection.
This example shows that Boltzmann selection in finite populations criti-
cally depends on a good annealing schedule. Normally we run F'D A with
truncation selection. This selection method is a good compromise. But
Boltzmann selection with SDS schedule is of comparable performance.

Estimates for the necessary size of the population can also be found
in (Harik et al., 1999). But they use a weaker performance definition.
The goal is to have a certain percentage of the bits of the optimum in
the final population. Furthermore their result is only valid for fitness
function which are approximately normally distributed.

The danger of fixation can further be reduced by a technique very
popular in Bayesian statistics. This is discussed in the next section.

4.6 Population Size, Mutation, and Bayesian Prior

In order to derive the results of this section we will use a normalized
representation of the distribution.

Theorem 4.4 (Bayesian Factorization). Fach probability can be fac-
tored into

n

(4.47) p(x) = p(a1) [ | pleilpa:)

=2
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Proof: By definition of conditional probabilities we have

n
(4.48) p(x) = p(z1) HP(%’|€U1, L, Tim)

i=2
Let pa; C {x1,-+- ,x;—1}. f &; and {z1, -, 2;_1 } \ pa; are conditionally
independent given pa;, we can simplify p(z;|z1,- - ,z;—1) = p(zi|pa;).

O
PA; are called the parents of variable X;. This factorization can be
represented by a directed graph. In the context of graphical models the
graph and the conditional probabilities are called a Bayesian network
(Jordan, 1999; Frey, 1998). It is obvious that the factorization used in
Theorem 4.2 can be easily transformed into a Bayesian factorization.
Usually the empirical probabilities are computed by the maximum
likelihood estimator. For N samples with m < N instances of z the
estimate is defined by

5(z) = =
For m = N we obtain p(z) = 1 and for m = 0 we obtain p(z) =

0. This leads to our gene fixation problem, because both values are
attractors. The fixation problem is reduced if p(z) is restricted to an
interval 0 < pmin < p(x) < 1 — ppin < 1. This is exactly what results
from the Bayesian estimation. The estimate p(x) is the expected value
of the posterior distribution after applying Bayes formula to a prior
distribution and the given data. For binary variables x the estimate

R m—+r

(4.49) pa) = oo
is used with r > 0. r is derived from a Bayesian prior. r = 1 is the result
of the uniform Bayesian prior. The larger r, the more the estimates tend
towards 1/2. The reader interested in a derivation of this estimate in the
context, of Bayesian networks is referred to (Jordan, 1999).

The Bayesian prior can be seen as a mutation force. Wright ((1970))
included mutation with a recurrent symmetric mutation rate of 0 < p <
1 as follows into his equation

oW
(4.50) Ap; = pi(1)(1 —mt))% — p(pi(t) — (1 = pi(?))

A similar equation is obtained if a Bayesian prior is used. We use the
formula
pi(t)N +r

pi(t+1) = N + 2r
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where p? () is given by Wright’s equation 2.4. Setting v = r/N we obtain

(4.51)  Api(t) = pilt) + pi(t) (1 — pi(t) 2 + 1 :27

- g (P + pO0 =) )

The attractors of this equation are in the interior of the unit cube. The
location is given by an equilibrium between selection and mutation. How
can we determine an appropriate value for r for our F’'DA application?
In principle should the location be as far as possible in the interior under
te constraint that the optima are generated with high probability. In this
paper we make a simplified analysis.

The uniform prior gives for m = 0 the value Py = 1/(N +2). If N
is small, then p,,;, might be so large that we generate the optima with
a very small probability only. This means we perform more a random
search instead of converging to the optima. This consideration leads
to a constraint. 1 — p,n should be so large that the optima are still
generated with high probability. We now heuristically derive pj,;, under
the assumption that there is a unique optimum. To simplify the formulas
we require that max p(x,p¢) > e L.

This means that the optimum string z,,+ should be generated more
than 30% at equilibrium. This is large enough to observe equilibrium and
convergence. Let us first investigate the UM DA factorization p(z) =
[1p(z;). For r = 1 the largest probability is pmee = (N + 1)/(N + 2).
Obviously

Pmae = 1 — N—+2 =1—pmin
The largest probability to generate the optimum is given by
- 1 .
D(Topt) = l1—-——)=~e N2
o) =I10 - ) e

If N = O(n'~®) with a > 0, then p(z,,t) becomes arbitrarily small for
large n. For N = n we obtain p(z.p:) = e . This gives the following
guideline, which actually is a lower bound of the population size.

Rule of Thumb: For UM DA the size of the population should be at
least equal to the size of the problem, if a Bayesian prior of r = 1 is
used.

Bayesian priors are also defined for conditional distributions. The
above heuristic derivation can also be used for general Bayesian fac-
torizations. The Bayesian estimator is for binary variables
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5(2i|pas) m+r

zilpa;) = ——
P\Z;|pa; Ptor

P is the number of occurrences of pa;. We make the assumption that
in the best case the optimum constitutes 25% of the population. This

gives P > N/4. For r = 1 we compute as before

n n
. . 1 o n
P(Topt) = il;[lp(%pti Plopt;) = il;[l(l - m) Re N2

If we set N = 4n we obtain p(z.p) ~ e !. Thus we obtain a lower
bound for the population size:

Rule of Thumb: For F-D A using a factorization with many conditional
distributions and Bayesian prior of r = 1, the size of the population
should be about four times the size of the problem.

These rule of thumbs have been heuristically derived. They have to
be confirmed by numerical studies. Our F'D A estimate is a crude lower
bound. There exist more general estimates. We just cite Vapnik (Vapnik,
1998). In order to approximate a distribution with a reasonable accuracy,
he proposes to use a sample size which is about 20 times larger than the
number of free parameters of the distribution. For UM DA this gives
20n, i.e. 20 times our estimate.

We demonstrate the importance of using a Bayesian prior by an ex-
ample. It is a deceptive function of order 4 and problem size of n = 32.
Our convergence theorem gives convergence of FDA with Boltzmann
selection and an exact factorization. The exact factorization consists of
marginal distributions of size 4. We compare in Figure 4.1 FDA with
SDS Boltzmann selection and truncation selection without Bayesian
prior. We also show a run with SDS Boltzman selection and Bayesian
prior.

The simulation was started at p = 0.15, i.e. near the local optimum
p = 0. Nevertheless, FFDA converges to the global optimum at p = 1.
It is interesting to note that FFDA at first moves into the direction of
the local optimum. At the very last moment the direction of the curve is
dramatically changed. SDS Boltzmann selection behaves almost identical
to truncation selection with threshold 7 = 0.35. But both methods need
a huge population size in order to converge to the optimum. In this
example it is N = 20000. If a prior of » = 1 is used the population size
can be reduced to N = 200. With this prior the curve changes direction
earlier. Because of the prior the univariate marginal probabilities never
reach p = 0 or p = 1. In this example p stops at about p = 0.975.

Let us now summarize the results: Because F'D A uses finite samples
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FIGURE 4.1. Average fitness W (p) for FDA for Decep(32,4); population
size N = 20000 without prior and N = 200 with prior r = 1.

of points to estimate the conditional probabilities, convergence to the
optimum will depend on the size of the samples (the population size).
F'DA has experimentally proven to be very successful on a number of
functions where standard genetic algorithms fail to find the global op-
timum. In (Miihlenbein & Mahnig, 1999b), the scaling behaviour for
various test functions has been studied. The estimation of the probabili-
ties and the generation of new points can be done in polynomial time. If
a Bayesian prior is used the influence of the population size is reduced.
There is a tradeoff. If no prior is used then convergence is fast. But a
large population size might be needed. If a prior is used, the population
size can be much smaller. But the number of generations until conver-
gence increases. We have not yet enough numerical results, therefore we
just conjecture:

F'DA with a finite population of size N = 4n, SDS Boltzmann selection,
Bayesian prior, and a Bayesian factorization where the number of par-
ents is restricted by k independent of n, will converge to the optimum in
polynomial time with high probability.

4.7 Constraint Optimization Problems

An advantage of FDA compared to genetic algorithm is that it can
handle optimization problems with constraints. Mendelian recombina-
tion or crossover in genetic algorithms often creates points which violate
the constraints. If the structure of the constraints and the structure of
the ADF are compatible, then F'D A will generate only legal points.
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Definition 4.9. A constraint optimization problem is defined by

(4.52) mazf(x) = Z fi(xs,)
(4.53) 5.4.05(xu,)

Ci(xy,;) stands for the ith constraint function. xg,,x,, € X are sets
of variables. The constraints are locally defined. Thus they can be used
to test which marginal probabilities are 0. This is technically somewhat
complicated, but straightforward. For instance, if we have C(z1,z2) =
x1+ 22 < 1, then obviously p(X; = 1, Xo = 1) = 0. Thus the constraints
are mapped to marginal distributions: if C;(x,,) is violated then we set
pi(7u;) = 0.

We can now factorize f(x) as before. But we can also factorize the
graph defined by Cj(z,;). Our theory can handle the two cases: the
factorization of the constraints is contained in the factorization of the
function, i.e. z,, C xs,, or the factorization of the function is contained
in the factorization of the constraints, i.e. x5, C xy,

Let Q. be the set of feasible solutions. Then the Boltzmann distribu-
tion on . is defined as

po(x)elf )
yEQ. Po (y)eﬁf(y')

Then the following convergence theorem holds.

(4.54) Do, f.e(X) = 5

Theorem 4.5 (Convergence). Let 1) the initial population be feasi-
ble. Let 2) the factorization of thetechniques. constraints and the fac-
torization of the function be contained in the FDA factorization. Let
3) ApB(t) be an annealing schedule. Then for FDA the distribution at
time t is given by

po(x)eB ()
yEQ. po(y)el ) ()

(4.55) p(x,t) = 5

with the inverse temperature

(4.56) Bt) =D AB(r).

Let M be the set of global optima. If B(t) — oo, then
Yim zeM

4.57 li 1) =
(4.57) Jim p(z, 1) {0 olse

Proof: The proof is almost identical to the proof of Theorem 4.1. We
only have to show that the factorization generates feasible solutions only,
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if the probabilities are computed from a set of feasible solutions. The
proof is indirect. Suppose there exists x which does not satisfy the kth
constrain C},(xy,, ). Then

n
0#p(x,t+1)= Hps(xbi X5 t)

i=1
Thus we have p®(x,,) # 0. This means that there exist at least one
individual in generation ¢ which violates the constraint. But this is a
contradiction to assumption 1). O

The factorization theorem needs an analytical description of the func-

tion. But it is also possible to determine the factorization from the data
sampled. This is described next.

5 Computing a Bayesian Network from Data

The F' D A factorization is based on the decomposition of the fitness func-
tion. This has two drawbacks: first, the structure of the function has to
be known. Second, for a given instance of the fitness function, the struc-
ture might not give the smallest factorization possible. In other words:
complex structures are not necessarily connected to corresponding com-
plex dependency structures for a given fitness function. The actual de-
pendencies depend on the actual function values. This problem can be
circumvented by computing the dependency structure from the data.

Computing the structure of a Bayesian network from data is called
learning. Learning gives an answer to the question: Given a population
of selected points M (t), what is a good Bayesian factorization fitting
the data? The most difficult part of the problem is to define a quality
measure also called scoring measure.

A Bayesian network with more arcs fits the data better than one with
less arcs. Therefore a scoring metric should give the best score to the
minimal Bayesian network which fits the data. It is outside the scope of
this paper to discuss this problem in more detail. The interested reader is
referred to the two papers by Heckerman and Friedman et al. in (Jordan,
1999).

For Bayesian networks two quality measures are most frequently used
- the Bayes Dirichlet (BDe) score and the Minimal Description Length
(MDL) score. We concentrate on the MDL principle. This principle is
motivated by universal coding. Suppose we are given a set D of instances,
which we would like to store. Naturally, we would like to conserve space
and save a compressed version of D. One way of compressing the data
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is to find a suitable model for D that the encoder can use to produce
a compact version of D. In order to recover D we must also store the
model used by the encoder to compress D. Thus the total description
length is defined as the sum of the length of the compressed version of
D and the length of the description of the model. The MDL principle
postulates that the optimal model is the one that minimizes the total
description length.

5.1 LFDA - Learning a Bayesian Factorization

In the context of learning Bayesian networks, the model is a network B
describing a probability distribution p over the instances appearing in
the data. Several authors have approximately computed the MDL score.
Let M = |D| denote the size of the data set. Then MDL is approximately
given by

(5.1)  MDL(B,D) = —1d(P(B)) + M - H(B,D) + £ PA -1d(M)
with 1d(z) := log,(z). P(B) denotes the prior probability of network

B, PA =3}, 2lPail gives the total number of probabilities to compute.
H(B, D) is defined by

I s e e

i=1 pa; x;
where m(z;, pa;) denotes the number of occurrences of z; given config-
uration pa;. m(pa;) =y, m(zi, pa;). If pa; = 0, then m(z;,) is set to
the number of occurrences of z; in D.

The formula has an interpretation which can be easily understood.
If no prior information is available, P(B) is identical for all possible
networks. For minimizing, this term can be left out. 0.5PA - 1d(M)
is the length required to code the parameter of the model with
precision 1/M. Normally one would need PA - 1d(M) bits to encode
the parameters. However, the central limit theorem says that these
frequencies are roughly normally distributed with a variance of M ~1/2.
Hence, the higher 0.51d(M) bits are not very useful and can be left
out. —M - H(B, D) has two interpretations. First, it is identical to the
logarithm of the maximum likelihood (ld(L(B|D))). Thus we arrive at
the following principle:

Choose the model which mazimizes 1d(L(B|D)) — 1PA-1d(M).

The second interpretation arises from the observation that H(B,D)
is the conditional entropy of the network structure B, defined by PA;,
and the data D. The above principle is appealing, because it has no
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parameter to be tuned. But the formula has been derived under many
simplifications. In practice, one needs more control about the quality vs.
complexity tradeoff. Therefore we use a weight factor a. Our measure is
defined by BIC.

(5.3) BIC(B,D,a) = —M - H(B, D) — aPA - 1d(M)

This measure with @ = 0.5 has been first derived by Schwarz (1978) as
Bayesian Information Criterion. Therefore we abbreviate our measure
as BIC(a).

To compute a network B* which maximizes BIC' requires a search
through the space of all Bayesian networks. Such a search is more
expensive than to search for the optima of the function. Therefore
the following greedy algorithm has been used. k4, is the maximum
number of incoming edges allowed.

BN(a, kmax)
e STEP 0: Start with an arc-less network.
e STEP 1: Add the arc (z;,z;) which gives the maximum increase
of BIC(a) if |PA;| < kmaz and adding the arc does not introduce
a cycle.
e STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can be easily done by
maintaining for each node a list of parents and ancestors, i.e. parents of
parents etc. Then (x; — x;) introduces a cycle if z; is ancestor of z;.

The BOA algorithm of Pelikan (Pelikan et al., 2000) uses the BDe
score. This measure has the following drawback. It is more sensitive to
coincidental correlations implied by the data than the MDL measure.
As a consequence, the BDe measure will prefer network structures with
more arcs over simpler networks (Bouckaert, 1994). The BIC measure
with @ = 1 has also been proposed by Harik (1999). But Harik allows
only factorizations without conditional distributions. This distribution
is only correct for separable functions.

Given the BIC score we have several options to extend FDA to LEFDA
which learns a factorization. Due to limitations of space we can only show
results of an algorithm which computes a Bayesian network at each gen-
eration using algorithm BN (0.5, kyaz ). F- DA and LF D A should behave
fairly similar, if LF'D A computes factorizations which are in probability
terms very similar to the F'D A factorization. FDA uses the same factor-
ization for all generations, whereas LF D A computes a new factorization
at each step which depends on the given data M.
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TABLE 5.1
Numerical results for different algorithms, LFDA with BN(a, 8)

Function [ n] o] N 7 [Succ% [ SDev
OneMax 30 | UMDA 30 | 0.3 75 4.3
30 0.25 | 100 | 0.3 2 1.4
30 0.5 ] 100 | 0.3 38 4.9
30 0.75 | 100 | 0.3 80 4.0
30 0.25 | 200 | 0.3 71 4.5
Saw(32,2,0.5) || 32 | UMDA | 50 | 0.5 1 45
32| UMDA | 200 | 0.5 100 0.0
32 0.25 | 200 | 0.5 41 2.2
32 0.5 ] 200 | 0.5 83 1.7
32 0.75 ] 200 | 0.5 96 0.9
32 0.25 | 400 | 0.5 84 3.7
Deceptive-4 32| UMDA | 800 | 0.3 0 0.0
32 FDA | 100 | 0.3 81 3.9
32 0.25 | 800 | 0.3 92 2.7
32 0.5 | 800 | 0.3 72 4.5
32 0.75 | 800 | 0.3 12 3.2

We have applied LF'DA to many problems (Miihlenbein & Mahnig,
1999b). The results are encouraging. Here we only discuss the functions
introduced in Section 3.4. We recall that UMDA finds the optimum of
the multi modal functions BigJump and Saw. UM DA uses univariate
marginal distributions only. Therefore its Bayesian network has no arcs.

Table 5.1 summarizes the results. For LFD A we used three different
values of a, namely o = 0.25,0.5,0.75. The smaller «, the less penalty
for the size of the structure. Let us discuss the results in more detail.
a = 0.25 gives by far the best results when a network with many arcs is
needed. This is the case for Deceptive-4. Here a Bayesian network with
three parents is optimal. & = 0.25 performs bad on problems where a
network with no arcs defines a good search distribution. For the linear
function OneMax BIC(0.25) has only a success rate of 2%. The success
rate can be improved if a larger population size N is used. The reason is
as follows. BIC(0.25) allows denser networks. But if a small population is
used, spurious correlations may arise. These correlations have a negative
impact for the search distribution. The problem can be solved by using
a larger population. Increasing the value from N = 100 to N = 200
increases the success rate from 2% to 71% for OneMax.

For Saw a Bayesian network with no arcs is able to generate the
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optimum. An exact factorization requires a factor with n parameters. We
used the heuristic BN with k,,,. = 8. Therefore the exact factorization
cannot be found. In all these cases @ = 0.75 gives the best results.
BIC(0.75) enforces smaller networks. But BIC(0.75) performs very bad
on Deceptive-4. Taking all results together BIC'(0.5) gives good results.
This numerical results supports the theoretical estimate.

The numerical result indicates that control of the weight factor o can
substantially reduce the amount of computation. For Bayesian network
we have not yet experimented with control strategies. We have inten-
sively studied the problem in the context of neural networks (Zhang
et al., 1997).

UMDA most efficiently optimizes the functions OneMaz and Saw.
F DA is efficient if the exact factorization needs a small number of par-
ents in the Bayesian graph (k < 5). LFDA most of the time also finds
the optimum. From the functions considered it has the largest difficulty
with the function Saw. The performance of LF DA can be substantially
improved, if for each fitness function a suitable value of « is chosen. We
recall that a small value of a leads to more complex Bayesian factor-
izations. The BIC score uses a = 0.5. This value is a good compro-
mise. But a = 0.75 gives much better performance for the functions
OneMaz and Saw, whereas a = 0.25 gives the best results for the
function Decep(36,4). These results are explained next.

5.2 Optimization, Dependencies, and Search Distributions

We have proven in Section 4.2 convergence of FDA with Boltzmann
selection to the set of global maxima. If the Boltzmann distribution
can be factorized, the computational complexity for one generation is
bounded by O(n - N - 2¥). k denotes the maximum number of parents.
A factorization can be determined if the fitness function is decomposed.
It can also be obtained from the data sampled. Unfortunately for many
interesting applications k is very large. If the fitness function is additively
decomposed on a 2D grid of size n, then k scales like O(y/n). It is easy
to show that k scales even like O(n) for the function Saw.

But we have demonstrated that the simple search distribution used by
UM D A guides the search to the optimum of Saw. The reason is that for
Saw we have a tendency: the more bits on, the higher the fitness value.
Therefore an exact Boltzmann factorization is not needed for optimiza-
tion! The problem of finding a good approximation of the Boltzmann
distribution which generates the optima with high probability can-
not be solved theoretically. Therefore we propose the following heuristic.

Multi-Factorization LFDA  Use different values of a in order to



May 14, 2001
54 / EVOLUTIONARY COMPUTATION AND BEYOND

obtain factorizations of different complexity. In a standard setting, use
a = 0.25, 0.5, and 0.75. Generate new search points using the different
factorizations for a certain percentage of the population.

6 The System Dynamics Approach to Optimization

We have shown that Wright’s equations converge to some local optima of
the fitness function at the boundary. We might ask ourselves: Why not
using the difference equations directly, without generating a population?
This approach is callled the systems dynamics approach to optimization.
We just discuss a few examples which are connected with our theory.

6.1 The Replicator Equation

In this section we investigate the relation between Wright’s equation
and a popular equation called replicator equation. Replicator dynamics
is a standard model in evolutionary biology to describe the dynamics
of growth and decay of a number of species under selection. Let S =
{1,2,...,s} be a set of species, p; the frequency of species i in a fixed
population of size N. Then the replicator equation is defined on a simplex

S*={p:>pi=10<p; <1}

(6.1 i — it (fi(p) : Zpi<t>fi(p>>

fi gives the fitness of species i in relation to the others. The replicator
equation is discussed in detail in (Hofbauer & Sigmund, 1998). For the
replicator equation a maximum principle can be shown.

Theorem 6.1. If there exists a potential V with 0V /0p; = f;(p), then
dV/dt > 0, i.e the potential V increases using the replicator dynamics.

If we want to apply the replicator equation to a binary optimization
problem of size n, we have to set s = 2™. Thus the number of species is
exponential in the size of the problem. The replicator equation can be
used for small size problems only.

Voigt (1989) had the idea, to generalize the replicator equation by
introducing continuous variables 0 < p;(z) < 1 with >, pi(x) = 1.
Thus p;(zx) can be interpreted as univariate probabilities. Voigt (1989)
proposed the following discrete equation.

Definition 6.1. The Discrete Diversified Replicator Equation DDRP
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s given by

fir(p) — sz pi(zk) fir(P)
Zwk pi(z) fir(P)

The name Discrete Diversified Replicator Equation was not a good

choice. The DDRP is more similar to Wright’s equation than to the
replicator equation. This is the content of the next theorem.

(6.2) pi(xr)(t +1) — pi(ze)(t) = pi(ar) (1)

Theorem 6.2. If the average fitness W (p) is used as potential, then
Wright’s equation and the Discrete Diversified Replicator Equation are
identical.

Proof: The average fitness is defines as
W(p) =V(P) =Y a [[pi=)
T i=1

We compute the derivatives

Obviously
ov oV
i) z——+pi(l)7——=< =V
pi( )api(l) pi( )8pi(1) (p)
The conjecture now follows from the proof of Wright’s equation. |

We recently discovered that Baum and Eagon (1967) have proven a
discrete maximum principle for certain instances of the DDRP.

Theorem 6.3 (Baum-Eagon). Let V(p) be a polynomial with non-
negative coefficients homogeneous of degree d in its variables p;(x;) with
pi(z;j) >0 and 3_, pi(z;) = 1. Let p(t + 1) be the point given by

(g 1) =2V __
(6.3) pilaj,t+1) = piles. )Bpi(g;)
2, PiTh) pi(zr)
The derivatives are taken at p(t). Then V(p(t + 1)) > V(p(t) unless
p(t+1) =p(?)

Equation 6.3 is exactly the DDRP with a potential V. Thus the DDRP
could be called the Baum-Eagon equation. From the above theorem
the discrete maximum principle for Wright’s equation follows by set-
ting V =W and d = n. Thus the potential is the average fitness, which
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is homogeneous of degree n.

6.2 Some System Dynamics Equations for Optimization

Theorem 6.3 shows that both, Wright’s equation and the DDRP, max-
imize some potential. This means that both equations can be used for
maximization. But there is a problem: both equations are determinis-
tic. For difficult optimization problems, there exists a large number of
attractors, each with a corresponding attractor region. If the iteration
starts at a point within the attractor region, it will converge to the corre-
sponding attractor at the boundary. But if the iteration starts at points
which lie at the boundary of two or more attractors, i.e on the separa-
trix, the iteration will be confined to the separatrix. The deterministic
system cannot decide for one of the attractors.

UM DA with a finite population does not have a sharp boundary be-
tween attractor regions. We model this behavior by introducing random-
ness. The new value p;(z;,t + 1) is randomly chosen from the interval

[(1 - c)p;(wjvt + 1)7 (1 + c)p;(:nj,t+ 1)]

pi(z;,t + 1) is determined by the deterministic equation. ¢ is a small
number. For ¢ = 0 we obtain the deterministic equation. In order to use
the difference equation optimally, we do not allow the boundary values
pi; =0 or p; = 1. We use p; = pmin and p; = 1 — pmin instead.

A second extension concerns the determination of the solution. All
dynamic equations presented use variables, which can be interpreted as
probabilities. Thus instead of waiting that the dynamic system converges
to some boundary point, we terminate the iteration at a suitable time
and generate a set of solutions. Thus, given the values for p;(z;) we gen-
erate points  according to the UM D A distribution p(x) = []\, pi(z;).

We can now formulate a family of optimization algorithms, based on
difference equations (DIFFOPT).

DIFFOPT

e STEP 0: Set t < 0 and p;(z;,0) = 0.5 Input ppin-

e STEP 1: Compute pi(z;,t + 1) according to a dynamic differ-
ence equation. If p}(z;,t + 1) < pmin then pi(z;,t + 1) = prin. If
Pi(zj,t +1) > 1 — prmin then pi(z;,t +1) =1 — pin

e STEP 2: Compute randomly p;(z;,t + 1) in the interval (1 —
opi(zj,t+1),(L+c)pi(zj,t+1). Set t =t +1

e STEP 3: If termination criteria are not met, go to STEP 1.

e STEP4: Generate N solutions according to p(x,t) =
[T, pi(z;,t) and compute maz f(x) and argmaz f(x)
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DIFFOPT is not restricted to Wright’s equation or DDRP. We pro-
pose a third one. Its rationale is as follows. From the analysis of UM D A
we know that Wright’s equation models proportionate selection. But
this method converges very slowly when approaching the boundary. We
have not been able to derive dynamic equations for truncation selection.
Therefore we experimented with a number of faster versions of Wright’s
equation. The following difference equation was ultimately chosen.

Definition 6.2. F—Wright(a) (Fast Wright) is defined by the following
difference equation

(6.4) pi(zit+1) = pi(w;,t) + sign(A) xexp (alnabs(A))
oW oW
(6.5) A = pi(x,t) Opi(zi) Zyif[\i Pil¥ir ) 3p.y
W(p)

If a value outside the interval (Pmin, 1 — Pmin) is generated, we just
set the value to the corresponding boundary value of the interval. For
a = 1 we obtain Wright’s equation. We usually set a = 0.5. The reason
for this choice is that we wanted a difference equation which resembles
as much as possible truncation selection. If we take the fitness function
OneMazx, we obtain for F — Wright(0.5) the difference equation

Ve —p(t) _ 1—p(t)

np(t) n

(6.6) p(t+1) —pl(t) =

This equation is similar to the approximate equation we have com-
puted for UM DA with truncation selection. Only the multiplication by
p is missing. This means that F' — Wright will normally converge faster
than UM DA with truncation selection.

We next evaluate the three difference equations with optimization
problems.

6.3 Optimization of Binary Functions

The DDRP opens the possibility to use an arbitrary potential. If
the potential is not a representation of the average fitness, Wright’s
equation and DDRP are different. We will demonstrate this with a
simple example, a quadratic potential.

Example 6.1. V(p) = >_;; a;jpi(1)p;(0) + ¢
¢ is chosen such that V(p) > 0. We make the assumption a;; = 0.
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We obtain
oV
oy~ S
oV
o~ 2
ov ov
Vilp) = pi(1)

o " 550

Obviously >, pi(1) 32, aijp;(0) = 32, pi(0) 32, ajipj(1). Therefore we
obtain:

Proposition: V(p) = 1/23", Vi(p) if c is suitable chosen.
The DDRP is given by

Z' iai'p'(o)_vi
Ap;(1) = pi(1) =L V»]+]c»

¢; has to be chosen that V;(p)+c¢; > 0. If we eliminate p;(0) = 1—p;(1)
and abbreviate p; := p;(1) we obtain

D i @i (1 =) = 3245 0505
Vita

(6.7) Ap; = pi(1 —pi)

We now determine Wright’s equation for the same problem. This
means we have to find a fitness function, which will give V(p) = W(p).

Example 6.2. f(x) =}, a;jzi(1 —z;) + ¢
¢ is chosen such that f(x) > 0.

We compute W (p) using our lemma

(6.8) W(p) = Zaijpi(l —pj)+ec
ij
Obviously W (p) = V(p). Wright’s equation is given by

Z#i aij(1 —pj) — Z#i GjiPj
W(p)

We now compare the two difference equations. We assume that ¢ =
¢; = 0 and obtain

(6.9) Ap; = pi(1 — p;)
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Di @i (1= pj) = D2, 055
W (p)
> @i (L= pj) — 3252 ajipj
Di Zj ai;(1—pj) + (1 —p;) Zj ajipj
The two difference equations differ in the denominator only. The
denominator of DDRP is normally smaller than the denominator of

Wright’s equation. Thus DDRP will converge faster. We will compare
three different examples.

Ap; = pi(1—pi)

Ap; = pi(1—pi)

Problem 1: a; ;41 = 1,a;;—1 = 1 All other values are set to 0.

The two global optima of this problem are 1,0,1,0... and 0,1,0,1, ..
with a fitness value of n — 1. The fitness function is symmetric. f(x)
and f(z) have the same fitness value. Z is the inverted z string. We
have an unstable attractor at p; = 0.5.

Problem 2: a;;11 = 1,a;;-1 = 2,an_1,n,—2 = 3 All other values are
set to 0.

Here the matrix a is not symmetric. The value a,—1n,—2 = 3
deceives the system to set x, ; = 1. But the optimal solution is
Tmaz = (0,1,0,1,..) with z,,_; = 0 for n even. The optimum fitness
value is 1.5n — 1.

Problem 3: a;; =1, j <+ All other values are set to 0.

Here the maximum is Z.. = (0,0,..0,1..,1,1), i.e the first half of
the bits are 0, the second half of the bits are 1. For n = 30 the optimal
value is 225.

In Table 6.1 numerical results are displayed. For Problem 1 with n =
30 the optimum is found at least once by all three methods. On the
average one bit is wrong. This behavior can be understood because of
the parallel search and the symmetry of the problem. For n = 60 we
have 3 bits wrong on the average. In Problem 2 bit n —1 is always set, to
1 (because of ap—_1,,—3 = 3. Therefore the optimum is missed, which has
a 0 at this place. The same behavior is to be observed for n = 60. The
optimum is missed by one point. A large difference in the performance
can be seen for problem 3. Here the results for the more local DDRP are
really bad. DDRP is not able to set the bits correct in the area where
all 1 meets all 0. This problem is the simplest for Wright’s equation and
F-Wright.
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TABLE 6.1
Numerical results (average over 10 runs). The number in brackets gives the
number of times a global optimum has been found.

Algorithm Prob. | n | Iter. | Maximum(S)
Wright 1]30 250 28.2(2)
DDRP 13| 70 27.8(1)
F-Wright (0.5) 130 20 27.6(1)
Wright 1|60 | 500 55.6(0)
DDRP 1|60 | 140 55.6(0)
F-Wright(0.5) 1|60 20 54.5(0)
Wright 2130 60 43.0(0)
DDRP 2130 70 43.1(1)
F-Wright(0.5) 2130 20 43.0(0)
Wright 2160 | 500 88.0(0)
DDRP 2|60 50 87.7(0)
F-Wright(0.5) 2|60 20 88.0(0)
Wright 3130 250 225.0(10)
DDRP 3130 250 204.4(00)
F-Wright(0.5) 3130 20 225.0(10)

Taken all three examples together shows that F' — Wright(0.5) is the
fastest and most efficient algorithm.

In Table 6.2 numerical results for a genetic algorithm GA and UM DA
are shown. The results of UM DA with proportionate selection and
Wright’s equation are fairly similar. The results for problem 2 are left
out because they are similar to problem 1. Note that no algorithm is
able to locate the global optimum for problem 1 with size n = 60. For
this problem FDA has to be used.

7 Three Royal Roads to Optimization

In this section we will try to classify the different approaches presented.
Population search methods are based on two components at least — se-
lection and reproduction with variation. In our research we have trans-
formed genetic algorithms to a family of algorithms using search distri-
butions instead of recombination/mutation of strings. The simplest al-
gorithm of this family is the univariate marginal distribution algorithm
UMDA.

Wright’s equation describes the behavior of UM DA using an infi-
nite population and proportionate selection. The equation shows that
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TABLE 6.2
Numerical results for UM DA with proportionate selection (p) and
truncation selection (tr) and a genetic algorithm with uniform crossover

(uc).

Algorithm | Prob. | n N | Iter. | Maximum(S)
UMDA p. 130|300 230 27.2(4)
UMDA tr. 130 | 300 90 26.9(2)
GA uc 130|300 | 100 27.4(1)
UMDA p. 1|60 | 600 | 400 53.0(0)
UMDA tr. 1|60 | 600 | 150 53.3(0)
GA uc 1|60 | 600 | 150 55.3(0)
UMDA p. 3130|300 | 200 225.0(10)
UMDA tr. 3|30 | 300 10 225.0(10)
GA uc 3|30 | 300 30 225.0(10)

UMDA does not primarily optimize the fitness function f(x), but the
average fitness of the population W (p) which depends on the continuous
marginal frequencies p;(z;). Thus the important landscape for popula-
tion search is not the landscape defined by the fitness function f(x), but
the landscape defined by W (p).

The two components of population based search methods — selec-
tion and reproduction with variation — can work on a microscopic
(individual) or a macroscopic (population) level. The level can be
different for selection and reproduction. It is possible to classify the
different approaches according to the level the components work. The
following table shows three classes of evolutionary algorithms, each
with a representative member.

Algorithm Selection Reproduction
Genetic Algorithm | microscopic | microscopic
UMDA microscopic | macroscopic
System Dynamics | macroscopic | macroscopic

A genetic algorithm uses a population of individuals. Selection and
recombination is done by manipulating individual strings. UM D A uses
marginal distributions to create individuals. These are macroscopic vari-
ables. Selection is done on a population of individuals, as genetic algo-
rithms do. In the system dynamics approach selection is modeled by a
specific dynamic difference equation for macroscopic variables. We be-
lieve that a fourth class — macroscopic selection and microscopic repro-
duction — makes no sense.
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Each of the approaches have their specific pros and cons. Genetic
algorithms are very flexible, but the standard recombination operator
has limited capabilities. UM DA can use any kind of selection method
which is also used by genetic algorithm. UM DA be extended to an
algorithm which uses a more complex factorization of the distribution.
This is done by the factorized distribution algorithm FDA. Selection is
very difficult to model on a macroscopic level. Wright’s equation are
valid for proportionate selection only. Other selection schemes lead to
very complicated system dynamics equations.

Thus for proportionate selection and gene pool recombination all
methods will behave similarly. But each of the methods allows exten-
sions which cannot be modeled with an approach using a different level.

Mathematically especially interesting is the extension of UM DA to
FDA with an adaptive Boltzmann annealing schedule. For this algo-
rithm convergence for a large class of discrete optimization problems
has been shown.

7.1 Boltzmann Selection and the Replicator Equation

Wright’s equation transforms the discrete optimization problem into a
continuous one. Thus mathematically we can try to optimize W (p) in-
stead of f(x). For F.D A with Boltzmann selection we even have a closed
solution for the probability p(x,t). It is given by

po(x)el )
7.1 t) = =———————
( ) P3,po (Xa ) Zy o (y)eﬁf(Y)

If we differentiate this equation we obtain after some computation

(rg) oG BB, (f(X) - v (y,t>f<y>>

For 8’ = 1 we obtain a special case of the replicator equation 6.1. We
just have to set f(p) = f;-

Theorem 7.1. The dynamics of Boltzmann selection with AB(t) =1 is
given by the replicator equation.

From the convergence theorem 4.1 we know that the global optima are
the only stable attractors of the replicator equation. Thus the replicator
equation is an ideal starting point for a system dynamics approach to op-
timization discussed in Section 6. Unfortunately the replicator equation
consists of 2™ different equations for a problem of size n.

Thus we are lead to the same problem encountered when analyzing
the Boltzmann distribution. We have to factorize the probability p(x) if
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we want to use the equation numerically.

Example 7.1. Linear function f(x) = >0 a;z;. In this case the
UMDA factorization is valid p(x) = [];—, pi(z;). By summation we
obtain from equation 7.2 after some manipulation

dpi _ dB

(7.3) T Epi(l — pi)a

For B' =1 this is just Wright’s equation without the denominator W .

if we extend this equation we obtain another proposal for the systems
dynamics approach to optimization

dp; dB oW

(7.4) o = P —Pi)a—pi

This equation needs further numerical studies. The speed of convergence
can be controlled by setting 8'. With
(7.5) a8 _ ¢

dt o
an interesting alternative to the fast version of Wright’s equation is ob-
tained. Further numerical studies are needed.

8 Conclusion and Outlook

This chapter describes a complete mathematical analysis of evolutionary
methods for optimization. The optimization problem is defined by a fit-
ness function with a given set of variables. Part of theory consists of an
adaptation of classical population genetics and the science of breeding
to optimization problems. The theory is extended to general popula-
tion based search methods by introducing search distributions instead
of doing recombination of strings. This theory can be also used for con-
tinuous variables, a mixture of continuous and discrete variables as well
as constraint optimization problems. The theory combines learning and
optimization into a common framework based on graphical models.

We have presented three approaches to optimization. We be-
lieve that the optimization methods based on search distributions
(UMDA,FDA,LFDA) have the greatest optimization power. The dy-
namic equations derived for UM DA with proportionate selection are
fairly simple. For UM DA with truncation or tournament selection and
FDA with conditional marginal distributions, the dynamic equations
can become very complicated. FDA with Boltzmann selection SDS is
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an extension of simulated annealing to a population of points. It shares
with simulated annealing the convergence property, but convergence is
much faster.

Ultimately our theory leads to a synthesis problem: finding a good fac-
torization for a search distribution defined by a finite sample. This is a
central problem in probability theory. One approach to this problem uses
Bayesian networks. For Bayesian networks numerically efficient algo-
rithms have been developed. Our LF D A algorithm computes a Bayesian
network by minimizing the Bayesian Information Criterion.

The computational effort of both FFDA and LFDA is substantially
higher than that of UM D A. Thus UM D A should be the first algorithm
to be tried in a practical problem. Next the Multi-Factorization LFDA
should be applied.

Our theory is defined for optimization problems which are defined by
quantitative variables. The optimization problem can be defined by a
cost function or a complex process to be simulated. The theory is not
applicable if either the optimization problem is qualitatively defined or
the problem solving method is non-numeric. A popular example of a
non-numeric problem solving method is genetic programming. In genetic
programming we try to find a program which optimizes the problem,
not an optimal solution. Understanding these kind of problem solving
methods will be a challenge for the new decade.

Theoretical biology currently faces the same problem. Population ge-
netics is still based on Mendel’s laws and a simple model of Darwinan
selection. But this model is a too great simplification of natural systems.
The organisms, which act in space and develop from a single cell are not
represented in the model.
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